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Abstract Aging, for virtually all life, is inescapable. However, within populations, biological

aging rates vary. Understanding sources of variation in this process is central to understanding the

biodemography of natural populations. We constructed a DNA methylation-based age predictor

for an intensively studied wild baboon population in Kenya. Consistent with findings in humans, the

resulting ‘epigenetic clock’ closely tracks chronological age, but individuals are predicted to be

somewhat older or younger than their known ages. Surprisingly, these deviations are not explained

by the strongest predictors of lifespan in this population, early adversity and social integration.

Instead, they are best predicted by male dominance rank: high-ranking males are predicted to be

older than their true ages, and epigenetic age tracks changes in rank over time. Our results argue

that achieving high rank for male baboons – the best predictor of reproductive success – imposes

costs consistent with a ‘live fast, die young’ life-history strategy.

Introduction
Aging, the nearly ubiquitous functional decline experienced by organisms over time (López-

Otı́n et al., 2013), is a fundamental component of most animal life histories (Jones et al., 2014). At

a physiological level, age affects individual quality, which in turn affects the ability to compete for

mates and other resources, invest in reproduction, and maintain somatic integrity. At a demographic

level, age is often one of the strongest predictors of survival and mortality risk, which are major

determinants of Darwinian fitness. In order for patterns of aging to evolve, individuals must vary in

their rates of biological aging. Thus, characterizing variation in biological aging rates and its sources

– beyond simply chronological age – is an important goal in evolutionary ecology, with the potential

to offer key insight into the trade-offs that shape individual life-history strategies (Monaghan et al.,

2008).

Recent work suggests that DNA methylation data can provide exceptionally accurate estimates of

chronological age (Horvath and Raj, 2018). These approaches typically use supervised machine
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learning methods that draw on methylation data from several hundred CpG sites, identified from

hundreds of thousands of possible sites, to produce a single chronological age prediction

(Hannum et al., 2013; Horvath, 2013; Levine et al., 2018). Intriguingly, some versions of these

clocks also predict disease risk and mortality, suggesting that they capture aspects of biological

aging that are not captured by chronological age alone (Declerck and Vanden Berghe, 2018). For

example, in humans, individuals predicted to be older than their true chronological age are at higher

risk of Alzheimer’s disease (Levine et al., 2015), cognitive decline (Levine et al., 2015;

Marioni et al., 2015), and obesity (Horvath et al., 2014). Accelerated epigenetic age is in turn pre-

dicted by environmental factors with known links to health and lifespan, including childhood social

adversity (Jovanovic et al., 2017; Raffington et al., 2020) and cumulative lifetime stress

(Zannas et al., 2015). These observations generalize to other animals. Dietary restriction, for

instance, decelerates biological aging based on DNA methylation clocks developed for laboratory

mice and captive rhesus macaques, and genetic knockout mice with extended lifespans also appear

epigenetically young for age (Maegawa et al., 2017; Petkovich et al., 2017; Stubbs et al., 2017).

However, while DNA methylation data have been used to estimate the age structure of wild popula-

tions (where birthdates are frequently unknown) (De Paoli-Iseppi, 2018; Polanowski et al., 2014;

Thompson et al., 2017; Wright et al., 2018), they have not been applied to investigating sources

of variance in biological aging in the wild.

To do so here, we coupled genome-wide data on DNA methylation levels in blood with detailed

behavioral and life-history data available for one of the most intensively studied wild mammal popu-

lations in the world, the baboons of the Amboseli ecosystem of Kenya (Alberts and Altmann,

2012). First, we calibrated a DNA methylation-based ‘epigenetic clock’ and assessed the clock’s

eLife digest For most animals, age is one of the strongest predictors of health and survival, but

not all individuals age at the same rate. In fact, animals of the same species can have different

’biological ages’ even when they have lived the same number of years. In humans and other

mammals this variation in aging shows up in chemical modifications known as DNA methylation

marks. Some researchers call these marks ’epigenetic’, which literally means ’upon the genes’. And

some DNA methylation marks change with age, so their combined pattern of change is often called

the ‘epigenetic clock’.

Environmental stressors, such as smoking or lack of physical activity, can make the epigenetic

clock ‘tick’ faster, making the DNA of some individuals appear older than expected based on their

actual age in years. These ‘biologically older’ individuals may also experience a higher risk of age-

related disease. Studies in humans have revealed some of the reasons behind this fast biological

aging, but it is unclear whether these results apply in the wild. It is possible that early life events

trigger changes in the epigenetic clock, affecting health in adulthood. In primates, for example,

adversity in early life has known effects on fertility and survival. Low social status also has a negative

effect on health.

To find out whether early experiences and the social environment affect the epigenetic clock,

Anderson, Johnston et al. tracked DNA methylation marks in baboons. This revealed that epigenetic

clocks are strong predictors of age in wild primates, but neither early adversity nor the strength of

social bonds affected the rate at which the clocks ticked. In fact, it was competition for social status

that had the most dramatic effect on the clock’s speed. Samples of males taken at different times

during their lives showed that their epigenetic clocks sped up or slowed down as they moved up or

down the social ladder, reflecting recent social experiences, rather than events early in their lives.

On average, epigenetic clock measurements overestimated the age in years of alpha males by

almost a year, showing that fighting to be on top comes at a cost.

This study highlights one way in which the social environment can influence aging. The next step

is to understand how health is affected by the ways that animals attain social status. This could help

researchers who study evolution understand how social interactions and environmental conditions

affect survival and reproduction. It could also provide insight into the effects of social status on

human health and aging.
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composition. Second, we compared the accuracy of this clock against other age-associated traits

and between sexes. Third, we tested whether variance in biological aging was explained by socioen-

vironmental predictors known to impact fertility or survival in this population. Finally, we investigated

an intriguing association between epigenetic age acceleration and male dominance rank. Our results

show that predictors of lifespan can be decoupled from rates of epigenetic aging. However, other

factors – particularly male dominance rank – are strong predictors of epigenetic clock-based age

acceleration. These results are the first to establish a link between social factors and epigenetic

aging in any natural animal population. Together, they highlight potential sex-specific trade-offs that

may maximize fitness, but also compromise physiological condition and potentially shorten male

lifespan.

Results

Epigenetic clock calibration and composition
We used a combination of previously published (Lea et al., 2016) and newly generated reduced-

representation bisulfite sequencing (RRBS) data from 245 wild baboons (N = 277 blood samples) liv-

ing in the Amboseli ecosystem of Kenya (Alberts and Altmann, 2012) to generate a DNA methyla-

tion-based age predictor (an ‘epigenetic clock’; Hannum et al., 2013; Horvath, 2013). Starting with

a data set of methylation levels for 458,504 CpG sites genome-wide (Figure 1—figure supplement

1; Supplementary file 1), we used elastic net regression to identify a set of 573 CpG sites that

together accurately predict baboon age within a median absolute difference (MAD) of 1.1

years ± 1.9 s.d. (Figure 1; Supplementary file 1; Pearson’s r = 0.762, p=9.70�10�54; median adult

life expectancy in this population is 10.3 years for females and 7.9 for males; Colchero et al., 2016).

The choice of these sites reflects a balance between increasing predictive accuracy within the sample

and minimizing generalization error to unobserved samples, using a similar approach as that used to

develop epigenetic clocks in humans (Hannum et al., 2013; Horvath, 2013) (see also Materials and

methods and Figure 1—figure supplement 2).

Consistent with findings in humans (Horvath, 2013), clock sites are enriched in genes, CpG

islands, promoter regions, and putative enhancers, compared to the background set of all sites we

initially considered (i.e., the 458,504 CpG sites that were candidates for inclusion in the clock; in

humans, this background set is the set of analyzable sites on the Illumina 27K methylation array [Hor-

vath, 2013; Figure 1—figure supplement 3]; Fisher’s exact tests, all p<0.05). Clock sites are also

more common in age-associated differentially methylated regions in baboons (Figure 1—figure sup-

plement 3; sites that increase with age: log2(odds ratio [OR])=4.189, p=3.64�10�9; sites that

decrease with age: log2(OR)=5.344, p=1.54�10�8) (Lea et al., 2015a), such that many, but not all,

of the clock sites also exhibit individual associations between DNA methylation levels and age (Fig-

ure 1—figure supplement 4 and Figure 2—figure supplement 1; Supplementary file 3). Addition-

ally, clock sites were more likely to be found in regions that exhibit enhancer-like activity in a

massively parallel reporter assay (sites that increase with age: log2(OR)=2.685, p=1.22�10�2; sites

that decrease with age: log2(OR)=4.789, p=1.78�10�5) (Lea et al., 2018a) and in regions implicated

in the gene expression response to bacteria in the Amboseli baboon population (overlap of lipopoly-

saccharide [LPS] up-regulated genes and sites that increase with age: log2[OR]=0.907, p=7.03�10�4;

overlap of LPS down-regulated genes and sites that decrease with age: log2[OR]=1.715,

p=1.55�10�3) (Lea et al., 2018b). Our results thus suggest that the Amboseli baboon epigenetic

clock not only tracks chronological age, but also captures age-related changes in blood DNA methyl-

ation levels that are functionally important for gene regulation, particularly in relation to the immune

system.

Comparison with other age-associated traits and differences between
sexes
Overall, the clock performed favorably relative to other morphological or biomarker predictors of

age in this population. The epigenetic clock generally explained more variance in true chronological

age, resulted in lower median error, and exhibited less bias than predictions based on raw body

mass index (BMI) or blood cell composition data from flow cytometry or blood smears (traits that

change with age in baboons; Altmann et al., 2010; Jayashankar et al., 2003). Its performance was
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comparable to molar dentine exposure, a classical marker of age (Galbany et al., 2011; Figure 1—

figure supplement 5). For a subset of 30 individuals, we had two samples collected at different

points in time. The predicted ages from these longitudinally collected samples were older for the

later-collected samples, as expected (Figure 1C,D; binomial test p=5.95�10�5). Furthermore, the
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Figure 1. Epigenetic clock age predictions in the Amboseli baboons. Predicted ages are shown relative to true chronological ages for (A) females

(Pearson’s r = 0.78, p=6.78�10�30, N = 142 samples) and (B) males (r = 0.86, p=5.49�10�41, N = 135 samples). Solid lines represent the best-fit line;

dashed lines show the line for y = x. (C, D) Predictions for individuals with at least two samples in the data set (N = 30; 14 females and 16 males). In 26

of 30 cases (87%), samples collected later were correctly predicted to be from an older animal.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Characteristics of the RRBS data set.

Figure supplement 2. Comparison of clock performance across alternative values of alpha.

Figure supplement 3. Enrichment of the epigenetic clock CpG sites by genomic compartment.

Figure supplement 4. Association between age and DNA methylation level for individual clock CpG sites.

Figure supplement 5. Comparison of the performance of the epigenetic clock to other predictors of chronological age.
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change in epigenetic clock predictions between successive longitudinal samples positively predicted

the actual change in age between sample dates (b = 0.312, p=0.027, controlling for sex; difference

between actual change and predicted change: mean 3.11 years ± 3.25 s.d.).

However, clock performance was not equivalent in males and females. Specifically, we observed

that the clock was significantly more accurate in males (Figure 1; males: N = 135; MAD = 0.85

years±1.0 s.d.; Pearson’s r = 0.86, p=5.49�10�41; females: N = 142; MAD = 1.6 years±2.4 s.d.;

r = 0.78, p=6.78�10�30; two-sided Wilcoxon test for differences in absolute error by sex:

p=4.37�10�9). Sex differences were also apparent in the slope of the relationship between pre-

dicted age and chronological age. Males show a 2.2-fold higher rate of change in predicted age, as

a function of chronological age, compared to females (Figure 1A,B; chronological age by sex inter-

action in a linear model for predicted age: b = 0.448, p=9.66�10�19, N = 277). Interestingly, sex dif-

ferences are not apparent in animals <8 years, which roughly corresponds to the age at which the

majority of males have achieved adult dominance rank and dispersed from their natal group

(Alberts and Altmann, 1995a; Alberts and Altmann, 1995b; Alberts et al., 2003) (N = 158, chro-

nological age by sex interaction b = �0.038, p=0.808). Rather, sex differences become apparent

after baboons have reached full physiological and social adulthood (N = 119, chronological age by

sex interaction b = 0.459, p=9.74�10�7 in animals � 8 years), when divergence between male and

female life-history strategies is most marked (Alberts and Altmann, 1995a; Alberts and Altmann,

1995b; Alberts et al., 2003) and when aging rates between the sexes are predicted to diverge

(Clutton-Brock and Isvaran, 2007; Kirkwood and Rose, 1991; Williams, 1957).

Because of these differences, we separated males and females for all subsequent analyses. How-

ever, we note that the effects of age on DNA methylation levels at individual clock sites are highly

correlated between the sexes (Pearson’s r = 0.91, p=3.35�10�204), with effect sizes that are, on

average, more precisely estimated in males (paired t-test p=4.53�10�74 for standard errors of bage;

Figure 1—figure supplement 4). In other words, the sex differences in clock performance reflect

changes in methylation that occur at the same CpG sites, but with higher variance in females. Lower

accuracy in females compared to males therefore appears to result from the greater variability in

DNA methylation change in older females (Figure 1).

Socioenvironmental predictors of variance in biological aging
Although the baboon epigenetic clock is a good predictor of age overall, individuals were often pre-

dicted to be somewhat older or younger than their known chronological age. In humans and some

model systems, the sign and magnitude of this deviation captures information about physiological

decline and/or mortality risk beyond that contained in chronological age alone (Maegawa et al.,

2017; Petkovich et al., 2017; Stubbs et al., 2017; Ryan et al., 2020).

To test whether this observation extends to wild baboons, we focused on four factors of known

importance to fitness in the Amboseli population. First, we considered cumulative early adversity,

which is a strong predictor of shortened lifespan and offspring survival for female baboons

(Tung et al., 2016; Zipple et al., 2019). We measured cumulative adversity as a count of major

adverse experiences suffered in early life, including low maternal social status, early-life drought, a

competing younger sibling, maternal loss, and high experienced population density (i.e., social

group size). Second, we considered social bond strength in adulthood, which positively predicts lon-

ger adult lifespan in baboons, humans, and other wild social mammals (Archie et al., 2014a;

Campos et al., 2020; Holt-Lunstad et al., 2010; Snyder-Mackler et al., 2020). Third, we consid-

ered dominance rank, which is a major determinant of access to mates, social partners, and other

resources in the Amboseli baboons (Archie et al., 2014a; Alberts et al., 2006; Gesquiere et al.,

2018; Lea et al., 2015b). Finally, we considered BMI, a measure of body condition that, in the

Amboseli baboons, primarily reflects lean muscle mass (mean body fat percentages have been esti-

mated at <2% in adult females and <9% in adult males) (Altmann et al., 1993). Because raw BMI (i.

e., BMI not correcting for age) also tracks growth and development (increasing as baboons reach

their prime and then declining thereafter [Altmann et al., 2010; Figure 2—figure supplement 2];

Pearson’s r in males between rank and raw BMI = �0.56, p=6.38�10�9), we calculated BMI relative

to the expected value for each animal’s age using piecewise regression, which also eliminates corre-

lations between BMI and male rank (Pearson’s r = �0.070, p=0.504). We refer to this adjusted mea-

sure of BMI as age-adjusted BMI.
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Because high cumulative early adversity and low social bond strength are associated with

increased mortality risk in the Amboseli baboons, we predicted that they would also be linked to

increased epigenetic age. For rank and age-adjusted BMI, our predictions were less clear: improved

resource access could conceivably slow biological aging, but increased investment in growth and

reproduction (either through higher fertility in females or physical competition for rank in males)

could also be energetically costly. To investigate these possibilities, we modeled the deviation

between predicted age and known chronological age (Dage) as a function of cumulative early adver-

sity, ordinal dominance rank, age-adjusted BMI, and for females, social bond strength to other

females. Social bond strength was not included in the model for males, as this measure was not

available for a large proportion of males in this data set (53.8%). We also included chronological age

as a predictor in the model, as epigenetic age tends to be systematically overpredicted for young

individuals and underpredicted for old individuals (Figure 1A,B; this bias has been observed in both

foundational work on epigenetic clocks [Hannum et al., 2013] and recent epigenetic clocks cali-

brated for rhesus macaques [Horvath, 2020], as well as for elastic net regression analyses more

generally [Engebretsen and Bohlin, 2019]). Including chronological age in the model, as previous

studies have done (Hannum et al., 2013; Levine et al., 2018), controls for this compression effect.

None of the predictor variables were strongly linearly correlated (all Pearson’s r < 0.35;

Supplementary file 4).

Surprisingly, despite being two of the strongest known predictors of lifespan in wild baboons,

neither cumulative early-life adversity nor social bond strength explain variation in Dage (Table 1). In

contrast, high male dominance rank is strongly and significantly associated with larger values of Dage

(b = �0.078, p=7.39�10�4; Figure 2; Table 1; Figure 2—figure supplement 3). Alpha males are

predicted to be an average of 10.95 months older than their true chronological age – a difference

that translates to 11.5% of a male baboon’s expected adult lifespan in Amboseli (Colchero et al.,

2016). In contrast, dominance rank did not predict Dage in females (p=0.228; Table 1). Finally, age-

adjusted BMI also predicted Dage in males (p=6.33�10�3), but not in females (p=0.682; Table 1).

These results are robust to inclusion of read depth and bisulfite conversion rate as covariates in the

model (Supplementary file 5; in males, read depth is correlated with chronological age

[R2 = �0.409, p=0.038], but is not correlated with Dage [R
2 = 0.003, p=0.561]).

Despite the tendency for high-ranking males to have higher raw BMI due to increased muscle

mass, the effects of rank and age-adjusted BMI in males are distinct. Specifically, modeling domi-

nance rank after adjusting for raw BMI also produces a significant effect of rank on Dage in the same

direction (p=9.93�10�4; Supplementary file 5), as does substituting the age-adjusted BMI measure

for either raw BMI or the residuals of raw BMI after adjusting for dominance rank (rank p=1.52�10�2

and p=1.88�10�4, respectively; Supplementary file 5). In contrast, BMI is only a significant predic-

tor of male Dage when corrected for age (i.e., age-adjusted) and when rank is included in the same

model (Table 1; Supplementary file 5). Furthermore, we obtain the same qualitative results if all low

BMI males are removed from the sample (BMI < 41; this cut-off was used because it drops all young

males who have clearly not reached full adult size; p=7.14�10�3; Supplementary file 5). Dropping

these males also eliminates the age-raw BMI correlation (Pearson’s r = �0.16, p=0.21).

Table 1. Predictors of Dage *.

Covariate
b
(female) p-value (female)

b
(male)

p-value
(male)

Intercept 5.400 1.33 � 10�15 3.294 1.19 � 10�8

Cumulative early adversity �0.050 0.807 �0.005 0.973

Social bond strength 0.382 0.164 — —

Dominance rank 0.025 0.228 �0.078 7.39 � 10�4

Age-adjusted BMI 0.026 0.682 0.111 6.33 � 10�3

Chronological age �0.699 1.62 � 10�28 �0.277 8.36 � 10�8

*Separate linear models for Dage were fit for females (N = 66) and for males (N = 93) for whom no data values were

missing; social bond strength was not included in the model for males. Significant results are shown in bold.
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Male dominance rank predicts epigenetic age
In baboon males, achieving high rank depends on physical condition and fighting ability

(Alberts et al., 2003). Consequently, rank in males is dynamic across the life course: males tend to

attain their highest rank between 7 and 12 years of age and fall in rank thereafter (Figure 2—figure
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Figure 2. Dominance rank predicts relative epigenetic age in male baboons. High rank is associated with elevated values of Dage (b = �0.0785,

p=7.39�10�4, N = 105). The y-axis shows relative epigenetic age, a measure of epigenetic aging similar to Dage that is based on the sample-specific

residuals from the relationship between predicted age and true chronological age. Positive (negative) values correspond to predicted ages that are

older (younger) than expected for that chronological age. Dominance rank is measured using ordinal values, such that smaller values indicate higher

rank. Dots and error bars represent the means and standard errors, respectively. Gray values above the x-axis indicate sample sizes for each rank.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Methylation levels of clock CpG sites across different genomic compartments.

Figure supplement 2. The relationship between age and body mass index in the Amboseli baboons.

Figure supplement 3. Relative epigenetic age versus chronological age.

Figure supplement 4. Male dominance rank versus chronological age.
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supplement 4). Thus, nearly all males in the top four rank positions in our data set were between 7

and 12 years of age at the time they were sampled (however, because not all 7–12 year olds are

high ranking, low-rank positions include males across the age range; Supplementary file 1, Fig-

ure 2—figure supplement 4). We therefore asked whether the association between high rank in

males and accelerated epigenetic aging is a function of absolute rank values, regardless of age, or

deviations from the expected mean rank given a male’s age (i.e., ‘rank-for-age’; Figure 2—figure

supplement 4). We found that including rank-for-age as an additional covariate in the Dage model

recapitulates the significant effect of ordinal male rank (p=0.045), but finds no effect of rank-for-age

(p=0.819; Supplementary file 5). Our results therefore imply that males incur the costs of high rank

primarily in early- to mid-adulthood, and only if they succeed in attaining high rank.

If attainment of high rank is linked to changes in epigenetic age within individuals, this pattern

should be reflected in longitudinal samples. Specifically, males who improved in rank between sam-

ples should look older for age in their second sample relative to their first and vice versa. To assess

this possibility, we calculated ‘relative epigenetic age’ (the residuals of the best-fit line relating chro-

nological age and predicted age) for 14 males for whom we had repeated samples over time, 13 of

whom changed ranks across sample dates (N = 28 samples, two per male). Samples collected when

males were higher status predicted higher values of relative epigenetic age compared to samples

collected when they were lower status (Figure 3; paired t-test, t = �2.99, p=0.011). For example, in

the case of a male whom we first sampled at low status (ordinal rank = 18) and then after he had

attained the alpha position (ordinal rank 1), the actual time that elapsed between samples was 0.79

years, but he exhibited an increase in predicted age of 2.6 years. Moreover, the two males that

showed a decrease in predicted age, despite increasing in chronological age (Figure 1D), were

among those that experienced the greatest drop in social status between samples. Thus, change in

rank between samples for the same male predicts change in Dage, controlling for chronological age

(R2 = 0.37, p=0.021). Consistent with our cross-sectional results, we found a suggestive relationship

between change in Dage and BMI (R2 = 0.31, p=0.08). Here, too, the effect of dominance rank does

not seem to be driven by BMI: while the association between change in Dage and change in rank is

no longer significant when modeling rank after adjusting for raw BMI, the correlation remains consis-

tent (R2 = 0.20, p=0.167). In contrast, raw BMI adjusted for rank explains almost none of the variance

in change in Dage (R
2 = 0.01, p=0.779).

Discussion
Together, our findings indicate that major environmental predictors of lifespan and mortality risk –

particularly social bond strength and early-life adversity in this population – do not necessarily pre-

dict epigenetic measures of biological age. Although this assumption is widespread in the literature,

including for epigenetic clock analyses (Liu et al., 2019; Shalev and Belsky, 2016), our results are

broadly consistent with empirical results in humans. Specifically, while studies of early-life adversity,

which also predicts lifespan in human populations, find relatively consistent support for a relationship

between early adversity and accelerated epigenetic aging in children and adolescents

(Jovanovic et al., 2017; Raffington et al., 2020; Brody et al., 2016a; Brody et al., 2016b;

Davis et al., 2017; Marini, 2018; Sumner et al., 2019), there is little evidence for the long-term

effects of early adversity on epigenetic age in adulthood (Zannas et al., 2015; Austin et al., 2018;

Boks et al., 2015; Lawn et al., 2018; Simons et al., 2016; Wolf et al., 2018). Thus, while DNA

methylation may make an important contribution to the biological embedding of early adversity into

adulthood (Aristizabal et al., 2020; Hertzman, 2012), it does not seem to do so through affecting

the epigenetic clock itself. Social and environmental effects on the clock instead seem to be most

influenced by concurrent conditions, lending support to ‘recency’ models for environmental effects

on aging that posit that health is more affected by the current environment than past experience

(Ben-Shlomo and Kuh, 2002; Shanahan et al., 2011; Shanahan and Hofer, 2011). Additional longi-

tudinal sampling will be necessary to evaluate whether current conditions alone can explain acceler-

ated epigenetic aging or whether it also requires integrating the effects of exposures across the life

course (the ‘accumulation’ model; Ben-Shlomo and Kuh, 2002; Shanahan and Hofer, 2011). Alter-

natively, the effects of early-life adversity and social bond strength may act through entirely distinct

pathways than those captured by our epigenetic clock (including targeting tissues or cell types that

we were unable to assess here). Indeed, the proliferation of alternative epigenetic clocks in humans
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has revealed that the clocks that best predict chronological age are not necessarily the clocks that

most closely track environmental exposures, and the same is likely to be true in other species

(Levine et al., 2018; Belsky et al., 2020). Notably, the functional significance of the clock – that is,

whether it reflects the mechanisms that causally drive aging, or instead serves as a passive biomarker

– also remains unclear.

We found that the most robust socioenvironmental predictor of epigenetic age in the Amboseli

baboons is male dominance rank, with a secondary effect of age-adjusted BMI observable when

rank is included in the same model. Although high BMI also predicts accelerated epigenetic age in

some human populations (Ryan et al., 2020), high BMI in these human populations is related to

being overweight or obese. In contrast, because wild-feeding baboons in Amboseli are extremely

lean (Altmann et al., 1993), the range of BMI in most human populations is distinct from the range

exhibited by our study subjects (importantly, BMI in humans is calculated differently than BMI in

baboons [see Materials and methods], and therefore the BMI scales are species specific). Instead,

the higher BMI values in our dataset represent baboons in better body condition (more muscle
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Figure 3. Male baboons exhibit higher relative epigenetic age when they occupy higher ranks. Relative epigenetic age for males in which multiple

samples were collected when they occupied different ordinal rank values. Arrow indicates the temporal direction of rank changes: left-facing arrows

represent cases in which the later sample was collected when males were higher ranking, and right-facing arrows represent cases in which the later

sample was collected when males were lower ranking.
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mass). Given that rank in male baboons is determined by physical fighting ability (Alberts et al.,

2003), these results suggest that investment in body condition incurs physiological costs that accel-

erate biological age. If so, the rank effect we observe may be better interpreted as a marker of com-

petitiveness, not as a consequence of being in a ‘high rank’ environment. In support of this idea,

work on dominance rank and gene expression levels in the Amboseli baboons suggests that gene

expression differences associated with male dominance rank tend to precede attainment of high

rank, rather than being a consequence of behaviors exhibited after high rank is achieved (Lea et al.,

2018b). Consistent with potential costs of attaining or maintaining high status, alpha males in Ambo-

seli also exhibit elevated glucocorticoid levels (Gesquiere et al., 2011), increased expression of

genes involved in innate immunity and inflammation (Lea et al., 2018b), and a trend toward ele-

vated mortality risk (Campos et al., 2020). Males who can tolerate these costs and maintain high

rank are nevertheless likely to enjoy higher lifetime reproductive success, since high rank is the single

best predictor of mating and paternity success in baboon males (Alberts et al., 2003).

This interpretation may also explain major sex differences in the effects of rank on epigenetic

age, where dominance rank shows no detectable effect in females. Dominance rank in female

baboons is determined by nepotism, not physical competition: females typically insert into rank hier-

archies directly below their mothers, and hierarchies therefore tend to remain stable over time (and

even intergenerationally) (Hausfater et al., 1982). Our results contribute to an emerging picture in

which dominance rank effects on both physiological and demographic outcomes are asymmetrical

across sexes, and larger in males. Specifically, in addition to Dage, male rank is a better predictor of

immune cell gene expression and glucocorticoid levels than female rank (Lea et al., 2018b;

Gesquiere et al., 2011; Levy et al., 2020). Recent findings suggest that high rank may also predict

increased mortality risk in male Amboseli baboons, whereas neither high rank nor low rank predicts

increased mortality risk in females (Campos et al., 2020). Together, these results argue that social

status/dominance rank effects should not be interpreted as a universal phenomenon. Instead, the

manner through which social status is achieved and maintained is likely to be key to understanding

its consequences for physiology, health, and fitness (Simons and Tung, 2019). Specifically, we pre-

dict that high status will be most likely to accelerate the aging process, including epigenetic age, in

species-sex combinations where high status increases reproductive success or fecundity, and achiev-

ing status is energetically costly (e.g., male red deer, mandrills, and geladas; female meerkats Clut-

ton-Brock et al., 2006; Clutton-Brock and Huchard, 2013; Emery Thompson and Georgiev,

2014). Expanding studies of biological aging to a broader set of natural populations, especially

those for which behavioral and demographic data are also available, will be key to testing these

predictions.

Materials and methods

Study population and biological sample collection
This study focused on a longitudinally monitored population of wild baboons (Papio cynocephalus,

the yellow baboon, with some admixture from the closely related anubis baboon P. anubis

Alberts and Altmann, 2001; Tung et al., 2008) in the Amboseli ecosystem of Kenya. This popula-

tion has been continuously monitored by the Amboseli Baboon Research Project (ABRP) since

1971 (Alberts and Altmann, 2012). For the majority of study subjects (N = 242 of 245 individuals),

birth dates were therefore known to within a few days’ error; for the remaining three individuals,

birth dates were known within 3 months’ error (Supplementary file 1).

All DNA methylation data were generated from blood-derived DNA obtained during periodic

darting efforts, as detailed in Lea et al., 2018b; Altmann et al., 1996; Tung et al., 2015. Samples

were obtained under approval from the Institutional Animal Care and Use Committee (IACUC) of

Duke University (currently #A044-21-02) and adhered to all the laws and regulations of Kenya. In

brief, individually recognized study subjects were temporarily anesthetized using a Telazol-loaded

dart delivered through a blow gun. Baboons were then safely moved to a new location where blood

samples and morphometric data, including body mass and crown-rump length, were collected.

Baboons were then allowed to recover from anesthesia in a covered holding cage and released to

their group within 2–4 hr. Blood samples were stored at �20˚ C in Kenya until export to the United

States.
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DNA methylation data
DNA methylation data were generated from blood-extracted DNA collected from known individuals

in the Amboseli study population (N = 277 samples from 245 animals; 13 females and 15 males were

each sampled twice, and 1 female and 1 male were each sampled three times). Here, we analyzed a

combined data set that included previously published RRBS (Meissner et al., 2005) data from the

same population (N = 36 samples) (Lea et al., 2016) and new RRBS data from 241 additional

samples.

RRBS libraries were constructed following Boyle et al., 2012, using ~200 ng baboon DNA plus

0.2 ng unmethylated lambda phage DNA per sample as input. Samples were sequenced to a mean

depth of 17.8 (±10.5 s.d.) million reads on either the Illumina HiSeq 2000 or HiSeq 4000 platform

(Supplementary file 1), with an estimated mean bisulfite conversion efficiency (based on the conver-

sion rate of lambda phage DNA) of 99.8% (minimum = 98.1%). Sequence reads were trimmed with

Trim Galore! (Krueger, 2012) to remove adapters and low quality sequence (Phred score < 20).

Trimmed reads were mapped with BSMAP (Xi and Li, 2009) to the baboon genome (Panu2.0),

allowing a 10% mismatch rate to account for the degenerate composition of bisulfite-converted

DNA. We used autosomally mapped reads to count the number of methylated and total reads per

CpG site, per sample (Xi and Li, 2009). To control for possible local genetic variation, we used

BSMAP’s rescaled ‘effective total counts’ measures, which adjusts for the presence of possible

CpG site disrupting genetic variants. Importantly, although our population consists of hybrids, previ-

ous work on DNA methylation variation across baboon species shows that species differences have a

negligible effect on quantifying DNA methylation (i.e., the rate of incorrect calls differs by <0.4%

between anubis and yellow baboons, the two species that contribute to ancestry in Amboseli;

Vilgalys et al., 2019).

Following Lea et al., 2016; Lea et al., 2015a, CpG sites were filtered to retain sites with a mean

methylation level between 0.1 and 0.9 (i.e., to exclude constitutively hyper- or hypo-methylated

sites) and mean coverage of �5�. We also excluded any CpG sites with missing data for �5% of

individuals in the sample. After filtering, we retained N = 458,504 CpG sites for downstream analy-

sis. For the remaining missing data (mean number of missing sites per sample = 1.4 ± 3.5% s.d.,

equivalent to 6409 ± 16,024 s.d. sites), we imputed methylation levels using a k-nearest neighbors

approach in the R package impute, using default parameters (Hastie et al., 2001).

Building the epigenetic clock
We used the R package glmnet (Friedman et al., 2009) version 2.0.10 to build a DNA methylation

clock for baboons. Specifically, we fit a linear model in which the predictor variables were normalized

levels of DNA methylation at 458,504 candidate clock CpG sites across the genome and the

response variable was chronological age. To account for the excess of CpG sites relative to samples,

glmnet uses an elastic net penalty to shrink predictor coefficients toward 0 (Friedman et al., 2010).

Optimal alpha parameters were identified by grid searching across a range of alphas from 0 (equiva-

lent to ridge regression) to 1 (equivalent to Lasso) by increments of 0.1, which impacts the number

of clock CpG sites by varying the degree of shrinkage of the predictor coefficients toward 0 (Fig-

ure 1—figure supplement 2). We defined the optimal alpha as the value that maximized R2

between predicted and true chronological age across all samples. We set the regularization parame-

ter lambda to the value that minimized mean-squared error during n-fold internal cross-validation.

To generate predicted age estimates for a given sample, we used a leave-one-out cross-valida-

tion approach in which all samples but the ‘test’ sample were included for model training, and the

resulting model was used to predict age for the left-out test sample. To avoid leaking information

from the training set into the test set, and to maximize the generalizability of the clock, we did not

remove batch effects from the quantile normalized methylation ratio estimates. However, we con-

firmed that our results in the main model, for both males and for females, were robust if we added

batch effect (previously generated samples [n = 36] versus newly generated samples [n = 241]) as a

covariate. Training samples were scaled independently of the test sample in each leave-one-out

model to avoid bleed-through of information from the test data into the training data. To do so, we

first quantile normalized methylation ratios (the proportion of methylated counts to total counts for

each CpG site) within each sample to a standard normal distribution. Training samples were then

separated from the test sample and the methylation levels for each CpG site in the training set were
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quantile normalized across samples to a standard normal distribution. To predict age in the test sam-

ple, we compared the methylation value for each site in the test sample to the empirical cumulative

distribution function for the training samples (at the same site) to estimate the quantile in which the

training sample methylation ratio fell. The training sample was then assigned the same quantile value

from the standard normal distribution using the function qnorm in R.

Epigenetic clock enrichment analyses
To evaluate whether CpG sites included in the epigenetic clock, relative to the 458,504 CpG back-

ground sites, were enriched in functionally important regions of the baboon genome (Lea et al.,

2015a; Vilgalys et al., 2019), we used two-sided Fisher’s exact tests to investigate enrichment/

depletion of the 573 epigenetic clock sites in (1) gene bodies and exons, based on the Ensembl

annotation Panu2.0.90; (2) CpG islands annotated in the UCSC Genome Browser; (3) CpG shores,

defined as the 2000 basepairs flanking CpG islands (following Lea et al., 2015a; Vilgalys et al.,

2019; Irizarry et al., 2009); and (4) promoter regions, defined as the 2000 basepairs upstream of

the 50-most annotated transcription start site for each gene (following Lea et al., 2015a;

Vilgalys et al., 2019). We also considered (5) putative enhancer regions, which have not been anno-

tated for the Panu2.0 assembly. We therefore used ENCODE H3K4me1 ChIP-seq data from human

peripheral blood mononuclear cells (PBMCs) (ENCODE Project Consortium, 2012) and the liftOver

tool to define likely enhancer coordinates in Panu2.0.

We also tested for enrichment of clock sites in regions of the genome that have been identified

by previous empirical studies to be of special interest. First, we considered regions that likely have

regulatory activity in blood cells, defined as all 200 base-pair windows that showed evidence of

enhancer activity in a recently performed massively parallel reporter assay (Lea et al., 2018a). We

used liftOver to identify the inferred homologous Panu2.0 coordinates for these windows, which

were originally defined in the human genome. Second, we defined age-related differentially methyl-

ated regions in the Amboseli baboons based on genomic intervals found, in previous analyses, to

contain at least three closely spaced age-associated CpG sites (inter-CpG distance �1 kb), as

described in Lea et al., 2015a. Third, because inflammatory processes involved in innate immunity

are strongly implicated in the aging process, we defined LPS up-regulated and LPS down-regulated

genes as those genes that were significantly differentially expressed (1% false discovery rate)

between unstimulated Amboseli baboon white blood cells and LPS-stimulated cells from the same

individual, following 10 hr of culture in parallel (Lea et al., 2018b).

Comparisons to alternative predictors of aging
To assess the utility of the DNA methylation clock relative to other data types, we compared its pre-

dictive accuracy to clocks based on three other age-related phenotypes: tooth wear (percent molar

dentine exposure; Galbany et al., 2011), body condition (BMI; Altmann et al., 2010), and blood

cell type composition (blood smear counts and lymphocyte/monocyte proportions from flow cytom-

etry performed on peripheral blood mononuclear cells, as in Lea et al., 2018b; Snyder-

Mackler et al., 2016). Leave-one-out model training and prediction were performed for each data

type using linear modeling. To compare the relative predictive accuracy of each data type, we calcu-

lated the R2 between predicted and chronological age, the MAD between predicted and chrono-

logical age, and the bias in age predictions (the absolute value of 1 � slope of the best-fit line

between predicted and chronological age) (Figure 1—figure supplement 5).

Tooth wear
Molar enamel in baboons wears away with age to expose the underlying dentine layer. Percent den-

tine exposure (PDE) on the molar occlusal surface has been shown to be strongly age-correlated in

previous work (Galbany et al., 2011). To assess its predictive power, we obtained PDE data from

tooth casts reported by Galbany et al., 2011 for the left upper molars (tooth positions M1, M2, M3)

and left lower molars (tooth positions M1, M2, M3) for 39 males and 34 females in our data set. For

each molar position (M1, M2, M3) within each individual, we calculated PDE as the mean for the

upper and lower molars. Because dentine exposure scales quadratically with respect to age

(Galbany et al., 2011), we fit age as a function of PDE using the following model:
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Body mass index
For both male and female baboons in Amboseli, body mass increases with age until individuals reach

peak size and then tends to decrease with age as animals lose fat and/or muscle mass

(Altmann et al., 2010). To quantify body condition using body mass, we calculated BMI values for

139 males and 154 females for whom body mass and crown-rump length data were available from

periodic darting efforts. We retained only measures taken from animals born into and sampled in

wild-feeding study groups, when sex-skin swellings (in females only) that could affect crown-rump

length measures were absent. BMI was calculated as mass (kilograms) divided by crown-rump length

(meters squared), following Altmann et al., 1993. To assess the predictive power of age-adjusted

BMI, we built sex-specific piecewise-regression models using the package segmented in R

(Muggeo and Muggeo, 2017). Breakpoints for the piecewise-regression models (to separate ‘youth-

ful’ versus ‘aged’ animals) were initialized at 8 years old for males and 10 years old for females, fol-

lowing findings from previous work on body mass in the Amboseli population (Altmann et al.,

2010).

Blood cell type composition
The proportions of different cell types in blood change across the life course, including in baboons

(Jayashankar et al., 2003). We assessed the predictive power of blood cell composition for age

using two data sets. First, we used data collected from blood smear counts (N = 134) for five major

white blood cell types: basophils, eosinophils, monocytes, lymphocytes, and neutrophils. Second, we

used data on the proportional representation of five PBMC subsets: cytotoxic T cells, helper T cells,

B cells, monocytes, and natural killer cells, measured using flow cytometry as reported by Lea et al.,

2018b (N = 53). Cell types were included as individual covariates for leave-one-out model training.

Sources of variance in predicted age
We asked whether factors known to be associated with inter-individual variation in fertility or survival

also predict inter-individual variation in Dage (predicted age from the epigenetic clock minus known

chronological age). To do so, we fit linear models separately for males and females, with Dage as the

dependent variable and dominance rank at the time of sampling, cumulative early adversity, age-

adjusted BMI, and chronological age as predictor variables (Tung et al., 2016). For females, we also

included a measure of social bond strength to other females as a predictor variable, based on find-

ings that show that socially isolated females experience higher mortality rates in adulthood

(Archie et al., 2014a; Silk et al., 2010). Samples with missing values for any of the predictor varia-

bles were excluded in the model, resulting in a final analysis set of 66 female samples (from 59

females) and 93 male samples (from 84 males). The chronological ages of samples with complete

data relative to samples with missing data were equivalent for females (t-test, t = 1.95, p=0.053) but

were slightly lower for males (t-test, t = �3.04, p=0.003; mean chronological ages are 7.98 and 9.65

years for complete and missing samples, respectively). Predictor variables were measured as follows.

Dominance rank
Sex-specific dominance hierarchies were constructed monthly for every social group in the study

population based on the outcomes of dyadic agonistic encounters. An animal was considered to win

a dyadic agonistic encounter if it gave aggressive or neutral, but not submissive, gestures, and the

other animal gave submissive gestures only (Hausfater, 1975). These wins and losses were entered

into a sex-specific data matrix, such that animals were ordered to minimize the number of entries

falling below the matrix diagonal (which would indicate that the lower ranked individual won a

dyadic encounter). Ordinal dominance ranks were assigned on a monthly basis to every adult based

on these matrices, such that low numbers represent high rank/social status and high numbers repre-

sent low rank/social status (Alberts et al., 2003; Hausfater et al., 1982). Although most analyses of

data from the Amboseli baboons have used ordinal ranks as the primary measure of social status, in

some analyses proportional rank (i.e., the proportion of same-sex members of an individual’s social

group that he or she dominates) has proven to be a stronger predictor of other trait outcomes

(Archie et al., 2014b; Levy, 2020). In this study, we chose to use ordinal ranks, but proportional
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and ordinal dominance rank were highly correlated in this particular dataset (R2 = 0.70,

p=1.13�10�58). Using ordinal rank rather than proportional rank therefore did not qualitatively affect

our analyses. Additionally, to investigate whether the patterns we observed are due to a consistent

effect of rank across all ages, or instead an effect of being high or low rank relative to the expected

(mean) value for a male’s age, we also calculated a ‘rank-for-age’ value. Rank-for-age is defined as

the residuals of a model with dominance rank as the response variable and age and age2 as the pre-

dictor variables (Figure 2—figure supplement 4).

Cumulative early adversity
Previous work in Amboseli defined a cumulative early adversity score as the sum of six different

adverse conditions that a baboon could experience during early life (Tung et al., 2016). This index

strongly predicts adult lifespan in female baboons, and a modified version of this index also predicts

offspring survival (Zipple et al., 2019). To maximize the sample size available for analysis, we

excluded maternal social connectedness, the source of adversity with the highest frequency of miss-

ing data, leaving us with a cumulative early adversity score generated from five different binary-

coded adverse experiences. These experiences were as follows: (1) early-life drought (defined

as �200 mm of rainfall in the first year of life), which is linked to reduced fertility in females

(Lea et al., 2015b; Beehner et al., 2006); (2) having a low ranking mother (defined as falling within

the lowest quartile of ranks for individuals in the data set), which predicts age at maturation

(Altmann and Alberts, 2003a; Altmann et al., 1988; Charpentier et al., 2008); (3) having a close-

in-age younger sibling (<1.5 years), which may redirect maternal investment to the sibling

(Altmann et al., 1978), (4) being born into a large social group, which may increase within-group

competition for shared resources (Lea et al., 2015b; Charpentier et al., 2008; Altmann and

Alberts, 2003b), and (5) maternal death before the age of 4, which results in a loss of both social

and nutritional resources (Charpentier et al., 2008; Lea et al., 2014).

Body mass index
Age-adjusted BMI was modeled as the residuals from sex-specific piecewise-regression models relat-

ing raw BMI to age. By taking this approach, we asked whether having relatively high BMI for one’s

age and sex predicted higher (or lower) Dage. To calculate rank-adjusted BMI values, we modeled

raw BMI as a function of rank in a linear model and calculated the residuals from the model. To cal-

culate dominance rank adjusted for raw BMI, we took the inverse approach. We note that BMI for

baboons is not directly comparable to BMI for humans because baboon BMI is measured as body

mass divided by the square of crown-rump length (because baboons are quadrupedal), whereas

human BMI is calculated as body mass divided by the square of standing height.

Social bond strength
For this analysis, we measured female social bond strength to other females using the dyadic social-

ity index (DSIF) (Campos et al., 2020). We did not include this parameter (male’s social bond

strength to females) for the male model because this measure is unavailable for many males in this

data set. DSIF was calculated as an individual’s average bond strength with her top three female

social partners, in the 365 days prior to the day of sampling, controlling for observer effort. This

approach is based on representative interaction sampling of grooming interactions between

females, in which observers record all grooming interactions in their line of sight while moving

through the group conducting random-ordered, 10 min long focal animal samples of pre-selected

individuals. Because smaller groups receive more observer effort per individual and per dyad (and

thus record more grooming interactions per individual or dyad), we estimated observer effort for

dyad d in year y as:

Ed;y ¼
cd sdð Þ
fd

where cd is the number of days the two females in a dyad were coresident in the same social group,

sd is the number of focal samples taken during the dyad’s coresidence, and fd is the average number

of females in the group during the dyad’s coresidence.

DSIF for each adult female dyad in each year is the z-scored residual, ", from the model:
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where Rd;y is the number of grooming interactions for dyad d in year y divided by the number of

days that the two individuals were coresident, and Ed;y is observer effort.

Analysis of longitudinal samples
To test whether changes in rank predict changes in relative epigenetic age within individuals, we

used data from 11 males from the original data set and generated additional RRBS data for nine

samples, resulting in a final set of 14 males who each were sampled at least twice in the data set, 13

of whom occupied different ordinal ranks at different sampling dates (mean years elapsed between

samples = 3.7 ± 1.65 s.d.; mean absolute difference in dominance ranks = 1.29 ± 8.34 s.d.). This

effort increased our total sample size to N = 286 samples from 248 unique individuals. To incorpo-

rate the new samples into our analysis, we reperformed leave-one-out age prediction with N-fold

internal cross-validation at the optimal alpha selected for the original N = 277 samples (alpha = 0.1).

For the 277 samples carried over from the original analysis, we verified that age predictions were

nearly identical between the previous analysis and the expanded data set (R2 = 0.98,

p=2.21�10�239; Supplementary file 1).

Based on the new age predictions for males in the data set (N = 140), we again calculated relative

epigenetic age as the residual of the best-fit line relating predicted age to chronological age. We

then used the 14 males with repeated DNA methylation profiles and rank measures in this data set

to test whether, within individuals, changes in dominance rank or rank-for-age explained changes in

relative epigenetic age between samples. In total, five males were sampled three times. For four of

these five, we only included the two samples that were sampled the farthest apart in time (i.e.,

excluded the temporal middle sample) to maximize the age change between sample dates. For the

fifth male, BMI information was missing for the third sample, so we included the first two samples

collected in time.

Code availability
All R code used to analyze data in this study is available at https://github.com/janderson94/Baboo-

nEpigeneticAging; Anderson, 2021; with a copy archived at swh:1:rev:

58ca836d3416c2a447cbd055aee66c11140aec86.
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