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Summary		25	
Aging,	for	virtually	all	life,	is	inescapable.	However,	within	species	and	populations,	26	

rates	of	biological	aging	(i.e.,	physical	decline	with	age)	vary	across	individuals.	27	
Understanding	sources	of	variation	in	biological	aging	is	therefore	central	to	understanding	28	
the	biodemography	of	natural	populations.	Here,	we	constructed	a	DNA	methylation-based	29	
predictor	of	chronological	age	for	a	population	of	wild	baboons	in	which	behavioral,	30	
ecological,	and	life	history	data	have	been	collected	for	almost	50	years	(N	=	277	blood	31	
samples	from	245	individuals,	including	30	who	were	longitudinally	sampled).	Consistent	32	
with	findings	in	humans	and	model	organisms	[1-4],	DNA	methylation	patterns	exhibit	a	33	
strong,	clock-like	association	with	chronological	age,	but	individuals	are	often	predicted	to	34	
be	somewhat	older	or	younger	than	their	known	age.	However,	the	two	most	robust	35	
predictors	of	lifespan	described	for	this	population—cumulative	early	adversity	and	social	36	
bond	strength—do	not	explain	this	deviation.	Instead,	the	single	most	predictive	factor	is	37	
male	dominance	rank:	high-ranking	males	are	predicted	to	be	biologically	older	than	their	38	
true	chronological	age,	such	that	alpha	males	appear	to	be	nearly	a	year	older	than	their	39	
known	age.	Longitudinal	sampling	indicates	that	males	who	climb	the	social	hierarchy	40	
subsequently	look	epigenetically	“older,”	likely	reflecting	the	high	energetic	costs	of	rank	41	
attainment	and	maintenance	in	male	baboons.	Together,	our	results	indicate	that	42	
environmental	effects	on	survival	and	epigenetic	age	can	be	disjunct,	and	that	achieving	43	
high	rank	for	male	baboons—the	best	predictor	of	reproductive	success—imposes	44	
physiological	costs	consistent	with	a	“live	fast,	die	young”	life	history	strategy.	45	

	46	
Keywords:	Epigenetic	age,	epigenetic	clock,	aging,	DNA	methylation,	dominance	rank,	47	
baboons	 	48	
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Results	and	discussion	49	
We	used	a	combination	of	previously	published	[5]	and	newly	generated	reduced-50	

representation	bisulfite	sequencing	(RRBS)	data	from	245	wild	baboons	(N	=	277	blood	51	
samples)	living	in	the	Amboseli	ecosystem	of	Kenya	[6]	to	generate	a	DNA	methylation-52	
based	age	predictor	(an	“epigenetic	clock:”	[1,	2]).	Starting	with	a	data	set	of	methylation	53	
levels	for	458,504	CpG	sites	genome-wide	(Figure	S1;	Table	S1),	we	used	elastic	net	54	
regression	to	identify	a	set	of	593	CpG	sites	that	accurately	predict	baboon	age	to	within	a	55	
median	absolute	difference	(MAD)	of	1.1	years	(Pearson’s	r	=	0.762,	p	<	10-53;	Table	S2;	56	
median	adult	life	expectancy	in	this	population	is	10.3	years	for	females	and	7.94	for	males	57	
[7]).		Because	the	clock	was	significantly	more	accurate	in	males	(N	=	135;	MAD	=	0.9	years;	58	
Pearson’s	r	=	0.86,	p	<	10-40)	than	in	females	(N	=	142;	MAD	=	1.6	years;	r	=	0.78,	p	<	10-29;	59	
two-sided	Wilcoxon	test	for	differences	in	absolute	error	by	sex:	p	=	4.35	x	10-9),	we	60	
separated	males	and	females	for	all	subsequent	analyses	(Figure	1A	and	1B).	61	

Overall,	the	clock	performed	favorably	relative	to	other	morphological	or	biomarker	62	
predictors	of	age	in	this	population.	The	epigenetic	clock	generally	explained	more	63	
variance	in	true	chronological	age,	resulted	in	lower	median	error,	and	exhibited	less	bias	64	
than	predictions	based	on	body	mass	index	(BMI)	or	blood	cell	composition	data	from	flow	65	
cytometry	or	blood	smears	(traits	found	to	change	with	age	in	baboons	[8,	9]).	Its	66	
performance	was	comparable	to	molar	dentine	exposure,	a	classical	marker	of	age	[10]	67	
(Figure	S2).	For	16	males	and	14	females,	we	had	two	samples	collected	at	different	points	68	
in	time.	The	predicted	ages	from	these	longitudinally	collected	samples	were	older	for	the	69	
later-collected	samples,	as	expected	(Figure	1C-D;	binomial	test	p	=	5.95	x	10-5).	70	
Furthermore,	the	change	in	epigenetic	clock	predictions	between	successive	longitudinal	71	
samples	positively	predicted	the	actual	change	in	age	between	sample	dates	(β	=	0.312,	p	=	72	
0.027).		73	

Figure	1.	Epigenetic	clock	age	predictions	in	the	Amboseli	baboons.	Predicted	ages	are	shown	relative	to	74	
true	chronological	ages	for	(A)	females	(Pearson’s	r	=	0.78,	p	<	10-29,	N	=	142	samples)	and	(B)	males	(r	=	75	
0.86,	p	<	10-40,	N	=	135	samples).	Solid	lines	represent	the	best	fit	line;	dashed	lines	show	the	line	for	y	=	x.	(C)	76	
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and	(D)	show	predictions	for	individuals	with	at	least	two	samples	in	the	data	set	(14	females	and	16	males,	77	
respectively).	In	26	of	30	cases	(87%),	samples	collected	later	were	correctly	predicted	to	be	from	an	older	78	
animal.	79	
	80	

In	addition	to	differences	in	overall	accuracy,	sex	differences	were	also	apparent	in	81	
the	slope	of	the	relationship	between	predicted	age	and	chronological	age.	Males	show	a	82	
2.2-fold	higher	rate	of	change	in	predicted	age,	as	a	function	of	chronological	age,	compared	83	
to	females	(Figure	1A-B;	chronological	age	by	sex	interaction	in	a	linear	model	for	84	
predicted	age:	β	=	0.448,	p	<	10-18,	N	=	277).	This	result	agrees	with	previous	findings	85	
showing	that	male	baboons	senesce	more	rapidly	than	females—a	pattern	shared	with	86	
most	other	primates	investigated	thus	far,	including	humans	[11].	Interestingly,	sex	87	
differences	are	not	apparent	in	animals	<	8	years,	which	roughly	corresponds	to	the	age	at	88	
which	the	majority	of	males	have	achieved	adult	dominance	rank	and	dispersed	from	their	89	
natal	group	[12-14]	(N	=	158,	chronological	age	by	sex	interaction	β	=	-0.038,	p	=	0.808).	90	
Rather,	sex	difference	becomes	apparent	after	baboons	have	reached	full	physiological	and	91	
social	adulthood	(N	=	119,	chronological	age	by	sex	interaction	β	=	0.459	,	p	<	10-6	in	92	
animals	≥	8	years),	when	divergence	between	male	and	female	life	history	strategies	is	93	
most	marked	[12-14]	and	when	aging	rates	between	the	sexes	are	predicted	to	diverge	[15-94	
17].	This	pattern	suggests	that	within	each	sex,	deviations	between	predicted	age	and	95	
chronological	age—commonly	interpreted	as	a	measure	of	“biological	age”	or	accelerated	96	
aging—may	also	be	affected	by	environmental	or	life	history	variation,	as	has	been	97	
suggested	in	humans,	lab	mice,	and	captive	rhesus	macaques	[3,	4,	18,	19].		98	
	 To	test	this	hypothesis,	we	focused	on	four	factors	of	known	importance	to	fertility	99	
and/or	survival	components	of	fitness	in	the	Amboseli	baboon	population.		First,	we	100	
investigated	the	effects	of	cumulative	early	adversity,	which	is	a	strong	predictor	of	101	
shortened	lifespan	in	female	baboons:	females	who	experience	three	or	more	major	102	
sources	of	early	adversity	have	expected	adult	lifespans	that	are	a	decade	shorter	than	103	
those	who	experience	none	[20].	Additionally,	those	females	are	less	capable	of	raising	104	
their	own	juvenile	offspring	later	in	life,	suggesting	that	early	adversity	compromises	their	105	
physical	condition	over	the	long-term	[21].	Following	[20,	21],	we	measured	cumulative	106	
adversity	as	a	count	of	major	adverse	experiences	suffered	in	early	life,	including	low	107	
maternal	social	status,	early	life	drought,	a	competing	younger	sibling,	maternal	loss,	and	108	
high	experienced	population	density.	To	maximize	our	sample	size,	we	omitted	early	life	109	
social	connectedness	(included	in	[20]	but	omitted	for	the	same	reason	in	[21]),	because	110	
social	connectedness	data	were	missing	for	mothers	born	relatively	early	in	the	long-term	111	
study.	We	predicted	that	high	cumulative	early	adversity,	which	is	linked	to	reduced	112	
lifespan,	would	predict	increased	biological	age.	113	

Second,	we	considered	social	bond	strength	in	adulthood,	which	is	positively	114	
associated	with	longer	adult	lifespan	in	female	Amboseli	baboons,	human	populations,	and	115	
several	other	wild	social	mammals	[22-24].	We	predicted	that	low	social	bond	strength,	116	
due	to	its	relationship	with	decreased	lifespan,	would	be	associated	with	increased	117	
biological	age.		118	

Third,	we	investigated	the	effects	of	dominance	rank,	which	is	a	major	determinant	119	
of	resource	access	in	baboons.	High-ranking	males	sire	the	most	offspring,	and	high-120	
ranking	females	experience	shorter	interbirth	intervals,	retain	higher	fertility	during	121	
droughts,	and	form	stronger	social	bonds	with	males	[22,	25-27].		122	
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Finally,	we	assessed	the	effect	of	BMI,	which	captures	dimensions	of	both	body	123	
condition	and	competitive	advantage	[8].	In	this	case,	we	calculated	BMI	relative	to	the	124	
expected	value	for	each	male’s	age,	which	eliminates	the	correlation	between	BMI	and	age	125	
and	BMI	and	rank.	The	predictions	for	dominance	rank	and	body	mass	index	associations	126	
were	less	clear:	improved	resource	access	could	conceivably	slow	biological	aging,	but	127	
increased	investment	in	growth	and	reproduction	(either	through	higher	fertility	in	128	
females	or	physical	competition	for	rank	in	males)	could	also	be	energetically	costly.		129	

	We	tested	these	predictions	by	modeling	the	deviation	between	predicted	age	and	130	
known	chronological	age	(Dage)	as	a	function	of	cumulative	early	adversity,	ordinal	131	
dominance	rank,	body	mass	index	(controlling	for	age),	and	for	females,	social	bond	132	
strength	to	other	females.	Social	bond	strength	was	not	included	in	the	model	for	males,	as	133	
this	measure	was	unavailable	for	a	large	proportion	of	males	in	this	data	set	(53.8%).	We	134	
also	included	chronological	age	as	a	predictor	in	the	model,	as	epigenetic	age	tends	to	be	135	
systematically	overpredicted	for	young	individuals	and	underpredicted	for	old	individuals	136	
(Figure	1A-B);	including	chronological	age	in	the	model	controls	for	this	compression	137	
effect.	No	predictor	variables	were	strongly	linearly	correlated	(all	R2	<	0.10;	Table	S3).	138	

Surprisingly,	despite	being	two	of	the	strongest	known	predictors	of	lifespan	in	wild	139	
baboons,	neither	cumulative	early	life	adversity	nor	social	bond	strength	explain	variation	140	
in	Dage	(Table	1).	In	contrast,	high	male	dominance	rank	is	strongly	and	significantly	141	
associated	with	larger	values	of	Dage	(β	=	-0.785,	p	=	7.0	x	10-4;	Figure	2;	Table	1).	Alpha	142	
males	are	predicted	to	be	an	average	of	10.95	months	older	than	their	true	chronological	143	
age—a	difference	that	translates	to	11.5%	of	a	male	baboon’s	expected	adult	lifespan	[7].		144	

Dominance	rank	is	strongly	age	structured	in	male	baboons:	males	tend	to	attain	their	145	
highest	rank	between	7	and	12	years	of	age	and	fall	in	rank	thereafter.	Thus,	nearly	all	146	
males	in	the	top	four	rank	positions	in	our	data	set	were	between	7	and	12	years	of	age	at	147	
the	time	they	were	sampled	(however,	because	not	all	7	–	12	year-olds	are	high-ranking,	148	
low	rank	positions	include	males	of	all	age	groups;	Table	S1,	Figure	S3).	Our	finding	that	149	
high	rank	predicts	accelerated	epigenetic	aging	therefore	implies	that	males	incur	the	costs	150	
of	high	rank	primarily	in	early	to	mid-adulthood,	and	only	if	they	succeed	in	attaining	high	151	
rank.	Accelerated	epigenetic	aging	is	thus	a	function	of	absolute	rank	values,	regardless	of	152	
age,	not	deviations	from	the	mean	rank	expected	given	a	male’s	age	(i.e.,	“rank-for-age,”	153	
which	can	be	quantified	as	the	residuals	of	male	dominance	rank	modeled	as	a	quadratic	154	
function	of	chronological	age:	Figure	S3).	In	support	of	this	interpretation,	a	model	that	155	
includes	rank-for-age	as	an	additional	covariate	recapitulates	the	significant	effect	of	156	
ordinal	male	rank	(p=0.045),	but	finds	no	effect	of	rank-for-age	(p=0.819;	Table	S4).	In	157	
contrast,	we	observed	no	evidence	for	rank	effects	on	Dage	in	females,	consistent	with	158	
overall	sex	differences	in	patterns	of	aging	in	primates	and	other	mammals	[15]	and	159	
marked	sex	differences	in	the	effects	of	rank	on	other	molecular	phenotypes	in	the	160	
Amboseli	baboons	specifically	[11,	28].		161	
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1Separate	linear	models	for	Dage	were	fit	for	females	(N	=	66)	and	for	males	(N	=	93)	for	whom	no	data	values	162	
were	missing;	social	bond	strength	was	not	included	in	the	model	for	males.	Significant	results	are	shown	in	163	
bold.	164	

Figure	2.	Dominance	rank	predicts	epigenetic	aging	in	male	baboons.	High	rank	is	associated	with	165	
elevated	values	of	Dage	(β	=	-0.0785,	p	=	7.39	x	10-4,	N	=	105).	The	y-axis	shows	relative	epigenetic	age,	a	166	
measure	of	epigenetic	aging	similar	to	Dage	that	is	based	on	the	sample-specific	residuals	from	the	167	
relationship	between	predicted	age	and	true	chronological	age.	Positive	(negative)	values	correspond	to	168	
predicted	ages	that	are	older	(younger)	than	expected	for	that	chronological	age.	Dominance	rank	is	169	
measured	using	ordinal	values,	such	that	smaller	values	indicate	higher	rank.	Dots	and	error	bars	represent	170	
the	means	and	standard	errors,	respectively.	Gray	values	above	the	x-axis	indicate	sample	sizes	for	each	rank.	171	
	172	

Previous	work	has	shown	that	high-ranking	male	baboons,	but	not	high-ranking	173	
female	baboons,	up-regulate	gene	expression	in	inflammation-related	and	immune	174	
response	pathways	[28].	Elevated	or	chronic	inflammation	is	thought	to	be	one	of	the	175	
hallmarks	of	aging,	and,	in	human	populations,	is	one	of	the	strongest	predictors	of	176	
mortality	risk	[29-31].	Consistent	with	these	observations,	CpG	sites	in	the	epigenetic	clock	177	
that	increase	in	DNA	methylation	with	age	(N	=	459	sites)	are	enriched	in	or	near	genes	178	
that	are	up-regulated	in	the	Amboseli	baboons	in	response	to	the	bacterial	endotoxin	179	
lipopolysaccharide	(LPS),	which	is	a	strong	driver	of	inflammation	(Figure	S3;	Fisher’s	180	
exact	test:	log2(odds	ratio)	=	1.88,	p	=	0.001;	gene	expression	data	from	[28]).	In	contrast,	181	
clock	sites	that	decrease	in	DNA	methylation	with	age	(N	=	134)	are	significantly	enriched	182	
in	or	near	genes	that	are	down-regulated	after	LPS	exposure	(Fisher’s	exact	test:	log2(OR)	=	183	

Table	1.	Predictors	of	Dage1	
Covariate	 β	

(Female)	
P-value	
(Female)	

β	
(Male)	

P-value	
(Male)	

Intercept	 5.400	 1.33	x	10-15	 3.294	 1.19	x	10-8	
Cumulative	early	adversity	 -0.050	 0.807	 -0.005	 0.973	
Social	bond	strength	 0.382	 0.164	 —	 —	
Dominance	rank	 0.025	 0.228	 -0.078	 7.39	x	10-4	
Body	mass	index	(age-adjusted)	 0.026	 0.682	 0.111	 6.33	x	10-3	
Chronological	age	 -0.699	 1.62	x	10-28	 -0.277	 8.36	x	10-8	
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3.28,	p	=	0.002).	Clock	sites,	especially	those	for	which	DNA	methylation	is	positively	184	
correlated	with	age,	are	also	enriched	in	genes,	CpG	islands,	promoter	regions,	and	putative	185	
enhancers,	compared	to	the	background	set	of	sites	we	initially	considered	as	candidates	186	
for	inclusion	in	the	clock	(Figure	S4;	Fisher’s	exact	tests,	all	p	<	0.005;	similar	functional	187	
enrichment	has	been	found	in	a	human	epigenetic	clock	[2]).	Moreover,	clock	sites	are	188	
enriched	in	regions	previously	found	to	change	in	methylation	levels	with	age	[32]	and	in	189	
regions	showing	regulatory	activity	in	high-throughput	reporter	assays	[33].	Together,	190	
these	results	suggest	that	accelerated	epigenetic	aging	in	males	reflects	functionally	191	
important	changes	in	DNA	methylation	levels,	concentrated	in	immune	response	and	192	
inflammation-related	pathways.												193	

In	baboon	males,	dominance	rank	reflects	physical	condition	and	fighting	ability.	194	
Rank	is	therefore	dynamic	across	the	life	course,	such	that	males	in	their	prime	(ages	7	–	195	
12)	are	most	likely	to	be	high-ranking,	and	the	same	male	is	likely	to	occupy	multiple	196	
positions	in	the	social	hierarchy	during	his	lifetime	[14].	If	accelerations	in	epigenetic	age	197	
are	tightly	coupled	to	rank,	our	results	predict	that	across	longitudinally	collected	samples,	198	
a	male	who	becomes	higher	ranking	should	look	older	for	age	in	his	second	sample	relative	199	
to	first,	whereas	a	male	who	loses	status	should	look	younger	for	age	in	his	second	sample	200	
relative	to	first.	To	assess	this	possibility,	we	calculated	the	residuals	of	the	best	fit	line	201	
relating	chronological	age	and	predicted	age	(“relative	epigenetic	age”)	for	14	males	for	202	
whom	we	had	repeated	samples	collected	when	they	occupied	different	dominance	rank	203	
positions	(N	=	28	samples,	2	per	male).	In	this	data	set,	the	sample	collected	when	males	204	
were	higher	status	typically	predicted	higher	values	of	relative	epigenetic	age	compared	to	205	
the	sample	collected	when	they	were	lower	status,	consistent	with	high	rank-associated	206	
accelerated	biological	aging	(Figure	3;	paired	t-test,	t	=	-2.31,	p	=	0.038).	For	example,	in	the	207	
case	of	one	young	adult	male	who	we	sampled	at	rank	18	and	then	rank	1,	as	he	was	first	208	
climbing	the	social	hierarchy,	the	actual	time	that	elapsed	between	samples	was	0.79	years	209	
but	he	exhibited	an	increase	in	predicted	age	of	2.6	years.	Moreover,	the	two	males	that	210	
showed	a	decrease	in	predicted	age,	despite	increasing	in	chronological	age	(Figure	1D),	211	
were	among	those	that	experienced	the	greatest	drop	in	social	status	between	samples.	212	
Thus,	change	in	rank	between	samples	for	the	same	male	predicted	change	in	Dage,	213	
controlling	for	chronological	age	(R2	=	0.24,	p=0.044).	Consistent	with	our	cross-sectional	214	
results,	we	did	not	observe	evidence	for	a	relationship	between	change	in	Dage	and	rank-215	
for-age	(R2	=	0.14,	p	=	0.135).	216	
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Figure	3.	Male	baboons	exhibit	higher	relative	epigenetic	age	when	they	occupy	higher	ranks.	Relative	217	
epigenetic	age	for	males	in	which	multiple	samples	were	collected	when	they	occupied	different	ordinal	rank	218	
values.	Arrow	indicates	the	temporal	direction	of	rank	changes:	left-facing	arrows	represent	cases	in	which	219	
the	later	sample	was	collected	when	males	were	higher-ranking,	and	right-facing	arrows	represent	cases	in	220	
the	later	sample	was	collected	when	males	were	lower-ranking.	221	
	222	

Together,	our	findings	indicate	that	major	environmental	predictors	of	lifespan	and	223	
mortality	risk	(e.g.,	social	bond	strength	and	early	life	adversity	in	this	population)	do	not	224	
necessarily	predict	epigenetic	measures	of	biological	age.	Although	this	assumption	is	225	
widespread	in	the	literature,	including	for	epigenetic	clock	analyses	[34,	35],	our	results	226	
are	broadly	consistent	with	empirical	results	in	humans.	Specifically,	while	studies	of	early	227	
life	adversity,	which	also	predicts	lifespan	in	human	populations,	find	relatively	consistent	228	
support	for	a	relationship	between	early	adversity	and	accelerated	epigenetic	aging	in	229	
children	and	adolescents	[36-41],	there	is	little	evidence	for	the	long-term	effects	of	early	230	
adversity	on	epigenetic	age	in	adulthood	[42-47].	Thus,	while	DNA	methylation	may	make	231	
an	important	contribution	to	the	biological	embedding	of	early	adversity	into	adulthood	232	
[48,	49],	it	does	not	seem	to	do	so	through	affecting	the	epigenetic	clock	itself.	Social	and	233	
environmental	effects	on	the	clock	instead	seem	to	be	most	influenced	by	concurrent	234	
conditions,	lending	support	to	“recency”	models	for	environmental	effects	on	aging	that	235	
posit	that	health	is	more	affected	by	the	current	environment	than	past	experience	[50-52].	236	
Additional	longitudinal	sampling	will	be	necessary	to	evaluate	whether	current	conditions	237	
alone	can	explain	accelerated	epigenetic	aging,	or	whether	it	also	requires	integrating	the	238	
effects	of	exposures	across	the	life	course	(the	“accumulation”	model:	[50,	52]).	Repeated	239	
samples	could	also	help	exclude	an	alternative	explanation	for	our	findings:	that	viability	240	
selection	against	individuals	who	experienced	high	early	adversity	attenuates	the	true	241	
effect	of	cumulative	early	adversity	on	relative	epigenetic	age.		242	

Finally,	our	analyses	reveal	that	males	who	achieve	high	rank	appear	epigenetically	243	
older	than	expected	given	their	known	chronological	age.	Although	high	ranking	males	also	244	
tend	to	be	larger	due	to	increased	muscle	mass	(Pearson’s	r	between	rank	and	BMI	=	0.56,	245	
p	=	6.38	x	10-9),	we	observed	an	additional,	independent	effect	of	age-adjusted	BMI:	males	246	
who	had	high	BMI	relative	to	their	age	also	looked	older	for	age,	controlling	for	rank	and	247	
age	(β		=	0.1107,	p	=	0.006)	(Table	1).	These	two	effects	suggest	that	investment	in	body	248	
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condition,	which	is	a	crucial	factor	in	male	competitive	ability,	incurs	other	physiological	249	
costs	that	compound	to	influence	biological	age.	Indeed,	previous	research	on	the	Amboseli	250	
baboons	also	points	to	costs	of	high	rank,	including	high	levels	of	glucocorticoids	in	alpha	251	
males	[53],	increased	expression	of	genes	involved	in	innate	immunity	and	inflammation	252	
[28],	and	a	trend	towards	elevated	mortality	risk	[54].	These	associations	may	arise	253	
because	high-ranking	males	are	both	more	likely	to	engage	in	physical	conflict	with	other	254	
males,	and	more	likely	to	spend	long	periods	of	time	in	energetically	costly	mate-guarding	255	
[55,	56].	Alternatively,	males	who	are	able	to	make	significant	investments	in	body	256	
condition,	while	tolerating	their	accompanying	costs,	may	be	able	to	successfully	maintain	257	
high	rank.	Importantly,	since	doing	so	is	likely	to	contribute	to	higher	lifetime	reproductive	258	
success	for	male	baboons,	the	fitness-associated	benefits	of	high	rank	can	exceed	the	costs,	259	
even	if	accelerated	biological	aging	increases	the	risk	of	mortality.		260	
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STAR	Methods	292	
Study	population	and	biological	sample	collection	293	
	 This	study	focused	on	a	longitudinally	monitored	population	of	wild	baboons	(Papio	294	
cynocephalus,	the	yellow	baboon,	with	some	admixture	from	the	closely	related	anubis	295	
baboon	P.	anubis	[57,	58])	in	the	Amboseli	ecosystem	of	Kenya.	This	population	has	been	296	
continuously	monitored	by	the	Amboseli	Baboon	Research	Project	(ABRP)	since	1971	[6].	297	
For	the	majority	of	study	subjects	(N	=	242	of	245	individuals),	birth	dates	were	therefore	298	
known	to	within	a	few	days’	error;	for	the	remainder,	birth	dates	were	known	within	3	299	
months’	error	(Table	S1).		300	

All	DNA	methylation	data	were	generated	from	blood-derived	DNA	obtained	during	301	
periodic	darting	efforts,	as	detailed	in	[28,	59,	60].	Samples	were	obtained	under	approval	302	
from	the	Institutional	Animal	Care	and	Use	Committee	(IACUC)	of	Duke	University	and	303	
adhered	to	all	the	laws	and	guidelines	of	Kenya.	In	brief,	individually	recognized	study	304	
subjects	were	temporarily	anesthetized	using	a	Telazol-loaded	dart	delivered	through	a	305	
blow	gun.	Baboons	were	then	safely	moved	to	a	new	location	where	blood	samples	and	306	
morphometric	data,	including	body	mass	and	crown-rump	length,	were	collected.	Baboons	307	
were	then	allowed	to	recover	from	anesthesia	in	a	covered	holding	cage	and	released	to	308	
their	group	within	2	–	4	hours.	Blood	samples	were	stored	at	-20	C	in	Kenya	until	export	to	309	
the	United	States.	310	
	311	
DNA	methylation	data	312	

DNA	methylation	data	were	generated	from	blood-extracted	DNA	collected	from	313	
known	individuals	in	the	Amboseli	study	population	(N	=	277	samples	from	245	animals;	314	
14	females	and	14	males	were	each	sampled	twice,	and	1	female	and	1	male	were	each	315	
sampled	three	times).	Here,	we	analyzed	a	combined	data	set	that	included	previously	316	
published	reduced	representation	bisulfite	sequencing	[61]	(RRBS)	data	from	the	same	317	
population	(N	=	36)	[5]	and	new	RRBS	data	from	241	additional	individuals.		318	

RRBS	libraries	were	constructed	following	[62],	using	~200	ng	baboon	DNA	plus	0.2	319	
ng	unmethylated	lambda	phage	DNA	per	sample	as	input.	Samples	were	sequenced	to	a	320	
mean	depth	of	17.8	(±	10.5	s.d.)	million	reads	on	either	the	Illumina	HiSeq	2000	or	HiSeq	321	
4000	platform	(Table	S1),	with	an	estimated	mean	bisulfite	conversion	efficiency	(based	on	322	
the	conversion	rate	of	lambda	phage	DNA)	of	99.8%	(minimum	=	98.1%).	Sequence	reads	323	
were	trimmed	with	Trim	Galore!	[63]	to	remove	adapters	and	low	quality	sequence	(Phred	324	
score	<	20).	Trimmed	reads	were	mapped	with	BSMAP	[64]	to	the	baboon	genome	325	
(Panu2.0)	allowing	a	10%	mismatch	rate	to	account	for	the	degenerate	composition	of	326	
bisulfite-converted	DNA.	We	used	the	mapped	reads	to	count	the	number	of	methylated	327	
and	total	reads	per	CpG	site,	per	sample	[64,	65].	Following	[5,	32],	CpG	sites	were	filtered	328	
to	retain	sites	with	a	mean	methylation	level	between	0.1	and	0.9	(i.e.,	to	exclude	329	
constitutively	hyper-	or	hypo-methylated	sites)	and	mean	coverage	³5x.	We	also	excluded	330	
any	CpG	sites	with	missing	data	for	³15%	of	individuals	in	the	sample.		After	filtering,	we	331	
retained	N	=	458,504	CpG	sites	for	downstream	analysis.		For	the	remaining	missing	data	332	
(mean	number	of	missing	sites	per	sample	=	1.4%	±	3.5%	s.d.,	equivalent	to	6,409	±	16,024	333	
sites),	we	imputed	methylation	levels	using	a	k-nearest	neighbors	approach	in	the	R	334	
package	impute,	using	default	parameters	[66].		335	
	336	
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Building	the	epigenetic	clock	337	
									 We	used	the	R	package	glmnet	[67]	to	build	a	DNA	methylation	clock	for	baboons.	338	
Specifically,	we	fit	a	linear	model	in	which	the	predictor	variables	were	normalized	levels	of	339	
DNA	methylation	at	458,504	candidate	clock	CpG	sites	across	the	genome	and	the	response	340	
variable	was	chronological	age.	To	account	for	the	excess	of	CpG	sites	relative	to	samples,	341	
glmnet	uses	an	elastic	net	penalty	to	shrink	predictor	coefficients	toward	0	[68].	Optimal	342	
alpha	parameters	were	identified	by	grid	searching	across	a	range	of	alphas	from	0	343	
(equivalent	to	ridge	regression)	to	1	(equivalent	to	LASSO)	by	increments	of	0.1.	We	344	
defined	the	optimal	alpha	as	the	value	that	maximized	R2	between	predicted	and	true	345	
chronological	age	across	all	samples.	We	set	the	regularization	parameter	lambda	to	the	346	
value	that	minimized	mean-squared	error	during	n-fold	internal	cross-validation.		347	

To	generate	predicted	age	estimates	for	a	given	sample,	we	used	a	leave-one-out	348	
cross-validation	approach	in	which	all	samples	but	the	“test”	sample	were	included	for	349	
model	training,	and	the	resulting	model	was	used	to	predict	age	for	the	left-out	test	sample.	350	
Importantly,	training	samples	were	scaled	independently	of	the	test	sample	in	each	leave-351	
one-out	model	to	avoid	bleed-through	of	information	from	the	test	data	into	the	training	352	
data.	To	do	so,	we	first	quantile	normalized	methylation	ratios	(the	proportion	of	353	
methylated	counts	to	total	counts	for	each	CpG	site)	within	each	sample	to	a	standard	354	
normal	distribution.	Training	samples	were	then	separated	from	the	test	sample	and	the	355	
methylation	levels	for	each	CpG	site	in	the	training	set	were	quantile	normalized	across	356	
samples	to	a	standard	normal	distribution.	For	predicting	age	in	the	test	sample,	we	357	
compared	the	methylation	value	for	each	site	in	the	test	sample	to	the	empirical	cumulative	358	
distribution	function	for	the	training	samples	(at	the	same	site)	to	estimate	the	quantile	in	359	
which	the	training	sample	methylation	ratio	fell.	The	training	sample	was	then	assigned	the	360	
same	quantile	value	from	the	standard	normal	distribution	using	the	function	qnorm	in	R.		361	
	362	
Comparisons	to	alternative	predictors	of	aging		 	363	
									 To	assess	the	utility	of	the	DNA	methylation	clock	relative	to	other	data	types,	we	364	
compared	its	predictive	accuracy	to	clocks	based	on	three	other	age-related	phenotypes:	365	
tooth	wear	(percent	molar	dentine	exposure	[10]),	body	condition	(body	mass	index:	BMI	366	
[8]),	and	blood	cell	type	composition	(blood	smear	counts	and	lymphocyte/monocyte	367	
proportions	from	flow	cytometry	performed	on	peripheral	blood	mononuclear	cells,	as	in	368	
[28,	69]).	Leave-one-out	model	training	and	prediction	were	performed	for	each	data	type	369	
using	linear	modeling	(i.e.,	not	glmnet,	since	the	number	of	features	was	much	less	than	the	370	
number	of	samples	in	this	case).	To	compare	the	relative	predictive	accuracy	of	each	data	371	
type,	we	calculated	the	R2	between	predicted	and	chronological	age,	the	median	absolute	372	
difference	between	predicted	and	chronological	age,	and	the	bias	in	age	predictions	(the	373	
absolute	value	of	1-	slope	of	the	best	fit	line	between	predicted	and	chronological	age)	374	
(Figure	S2).		375	
									 Tooth	wear.	Molar	enamel	in	baboons	wears	away	with	age	to	expose	the	underlying	376	
dentine	layer.	Percent	dentine	exposure	(PDE)	on	the	molar	occlusal	surface	has	been	377	
shown	to	be	strongly	age-correlated	in	previous	work	[10].	To	assess	its	predictive	power,	378	
we	obtained	PDE	data	from	tooth	casts	reported	by	Galbany	and	colleagues	[10]	for	the	left	379	
upper	molars	(tooth	positions	M1,	M2,	M3)	and	left	lower	molars	(tooth	positions	M1,	M2,	380	
M3)	for	39	males	and	34	females	in	our	data	set.	For	each	molar	position	(M1,	M2,	M3)	381	
within	each	individual,	we	calculated	PDE	as	the	mean	for	the	upper	and	lower	molars.	382	
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Because	dentine	exposure	scales	quadratically	with	respect	to	age	[10],	we	fit	age	as	a	383	
function	of	PDE	using	the	following	model: 𝑎𝑔𝑒	~&𝑃𝐷𝐸*+ + &𝑃𝐷𝐸*- 	+ &𝑃𝐷𝐸*..		384	

Body	mass	index.	For	both	male	and	female	baboons	in	Amboseli,	body	mass	385	
increases	with	age	until	individuals	reach	peak	size,	and	then	tends	to	decrease	with	age	as	386	
animals	lose	fat	and/or	muscle	mass	[8].	To	quantify	body	condition	using	body	mass,	we	387	
calculated	body	mass	index	(BMI)	values	for	139	males	and	154	females	for	whom	body	388	
mass	and	crown-rump	length	data	were	available	from	periodic	darting	efforts.	We	389	
retained	only	measures	taken	from	animals	born	into	and	sampled	in	wild-feeding	study	390	
groups,	when	sex-skin	swellings	(in	females	only)	that	could	affect	crown-rump	length	391	
measures	were	absent.	BMI	was	calculated	as	mass	(kilograms)	divided	by	crown-rump	392	
length	(meters	squared),	following	[70].	To	assess	the	predictive	power	of	BMI	for	age,	we	393	
built	sex-specific	piecewise-regression	models.	Breakpoints	for	the	piecewise-regression	394	
models	(to	separate	“youthful”	versus	“aged”	animals)	were	set	at	8	years	old	for	males	and	395	
10	years	old	for	females,	following	findings	from	previous	work	on	body	mass	in	the	396	
Amboseli	population	[8].		397	
									 Blood	cell	type	composition.	The	proportions	of	different	cell	types	in	blood	change	398	
across	the	life	course,	including	in	baboons	[9].	We	assessed	the	predictive	power	of	blood	399	
cell	composition	for	age	using	two	data	sets.	First,	we	used	data	collected	from	blood	smear	400	
counts	(N	=	134)	for	five	major	white	blood	cell	types:	basophils,	eosinophils,	monocytes,	401	
lymphocytes,	and	neutrophils.	Second,	we	used	data	on	the	proportional	representation	of	402	
five	peripheral	blood	mononuclear	cell	(PBMC)	subsets:	cytotoxic	T	cells,	helper	T	cells,	B	403	
cells,	monocytes,	and	natural	killer	cells,	measured	using	flow	cytometry	as	reported	by	Lea	404	
and	colleagues	[28]	(N	=	53).	Cell	types	were	included	as	individual	covariates	for	leave-405	
one-out	model	training.	406	
	407	
Sources	of	variance	in	predicted	age	408	

We	asked	whether	factors	known	to	be	associated	with	inter-individual	variation	in	409	
fertility	or	survival	also	predict	inter-individual	variation	in	Dage	(predicted	age	from	the	410	
epigenetic	clock	minus	known	chronological	age).	To	do	so,	we	fit	linear	models	separately	411	
for	males	and	females,	with	Dage		as	the	dependent	variable	and	dominance	rank	at	the	time	412	
of	sampling,	cumulative	early	adversity,	relative	BMI	(corrected	for	age),	and	chronological	413	
age	as	predictor	variables	[20]).	For	females,	we	also	included	a	measure	of	social	bond	414	
strength	to	other	females	as	a	predictor	variable,	based	on	findings	that	show	that	socially	415	
isolated	females	experience	higher	mortality	rates	in	adulthood	[22,	71].	Samples	with	416	
missing	values	for	any	of	the	predictor	variables	were	excluded	in	the	model,	resulting	in	a	417	
final	analysis	set	of	66	female	samples	(from	59	females)	and	93	male	samples	(from	84	418	
males).	The	chronological	ages	of	samples	with	complete	data	relative	to	samples	with	419	
missing	data	were	equivalent	for	females	(t-test,	t	=	1.95,	p	=	0.053)	but	were	slighly	lower	420	
for	males	(t-test,	t	=	-3.04,	p	=	0.003;	mean	chronological	ages	are	7.98	and	9.65	years	for	421	
complete	and	missing	samples,	respectively).	Predictor	variables	were	measured	as	422	
follows.	423	

Dominance	rank.	Sex-specific	dominance	hierarchies	were	constructed	monthly	for	424	
every	social	group	in	the	study	population	based	on	the	outcomes	of	dyadic	aggressive	425	
encounters.	Ordinal	dominance	ranks	were	assigned	to	every	adult	based	on	these	426	
hierarchies,	such	that	low	numbers	represent	high	rank/social	status	and	high	numbers	427	
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represent	low	rank/social	status	[72].	Although	most	analyses	of	data	from	the	Amboseli	428	
baboons	have	used	ordinal	ranks	as	the	primary	measure	of	social	status,	in	some	analyses	429	
proportional	rank	(i.e.,	the	proportion	of	same-sex	members	of	an	individual’s	social	group	430	
that	he	or	she	dominates)	has	proven	to	be	a	stronger	predictor	of	behavioral,	life	history,	431	
or	physiological	outcomes	[73].	In	this	study,	we	chose	to	use	ordinal	ranks,	but	432	
proportional	and	ordinal	dominance	rank	were	highly	correlated	in	our	dataset	(r2=.70,	433	
p=1.13	x	10-58).	Using	proportional	rank	rather	than	ordinal	rank	did	not	qualitatively	434	
affect	our	analyses.	Additionally,	to	investigate	whether	the	patterns	we	observed	are	due	435	
to	a	consistent	effect	of	rank	across	all	ages,	or	instead	an	effect	of	being	high	or	low	rank	436	
relative	to	the	expected	(mean)	value	for	a	male’s	age,	we	also	calculated	a	“rank-for-age”	437	
value.	Rank-for-age	is	defined	as	the	residuals	of	a	model	with	dominance	rank	as	the	438	
response	variable	and	age	and	age2	as	the	predictor	variables	(Fig	S4).	439	

Cumulative	early	adversity.	Previous	work	in	Amboseli	defined	a	cumulative	early	440	
adversity	score	as	the	sum	of	6	different	adverse	conditions	that	a	baboon	could	experience	441	
during	early	life	[20].	This	index	strongly	predicts	adult	lifespan	in	female	baboons,	and	a	442	
modified	version	of	this	index	also	predicts	offspring	survival	[21].	To	maximize	the	sample	443	
size	available	for	analysis,	we	excluded	maternal	social	connectedness,	the	source	of	444	
adversity	with	the	highest	frequency	of	missing	data,	leaving	us	with	a	cumulative	early	445	
adversity	score	generated	from	5	different	binary-coded	adverse	experiences.	These	446	
experiences	were:	(i)	early	life	drought	(defined	as	≤	200	mm	of	rainfall	in	the	first	year	of	447	
life),	which	is	linked	to	reduced	fertility	in	females	[27,	74];	(ii)	having	a	low	ranking	448	
mother	(defined	as	falling	within	the	lowest	quartile	of	ranks	for	individuals	in	the	dataset),	449	
which	predicts	rates	of	maturation	[75-77];	(iii)	having	a	close-in-age	younger	sibling	(<1.5	450	
years),	which	may	redirect	maternal	investment	to	the	sibling	[78],	(iv)	being	born	into	a	451	
large	social	group,	which	may	increase	within-group	competition	for	shared	resources	[27,	452	
77,	79],	and	(v)	maternal	death	before	the	age	of	4,	which	results	in	a	loss	of	both	social	and	453	
nutritional	resources	[77,	80].	454	

Body	mass	index.	BMI	was	modeled	as	the	residuals	from	sex-specific	piecewise	455	
regression	models	relating	BMI	to	age.	By	taking	this	approach,	we	asked	whether	having	456	
relatively	high	BMI	for	one’s	age	and	sex	predicted	higher	(or	lower)	Dage.	457	

Social	bond	strength.	For	this	analysis,	we	measured	female	social	bond	strength	to	458	
other	females	using	the	dyadic	sociality	index	(F-DSI)	[54].	We	did	not	include	this	459	
parameter	(male’s	social	bond	strength	to	females)	for	the	male	model,	because	this	460	
measure	is	unavailable	for	young	males	in	this	dataset.	F-DSI	was	calculated	as	an	461	
individual’s	average	bond	strength	with	her	top	three	female	social	partners,	in	the	365	462	
days	prior	to	the	day	of	sampling,	controlling	for	observer	effort.	This	approach	is	based	on	463	
representative	interaction	sampling	of	grooming	interactions	between	females,	in	which	464	
observers	record	all	grooming	interactions	in	their	line	of	sight	while	moving	through	the	465	
group	conducting	random-ordered,	10-minute	long	focal	animal	samples	of	pre-selected	466	
individuals.	Because	smaller	groups	receive	more	observer	effort	per	individual	and	per	467	
dyad	(and	thus	record	more	grooming	interactions	per	individual	or	dyad),	we	estimated	468	
observer	effort	for	dyad	d	in	year	y	as:	469	

𝐸/,1 =
𝑐/(𝑠/)
𝑓/

		470	

where	𝑐/ 	is	the	number	of	days	the	two	females	in	a	dyad	were	coresident	in	the	same	471	
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social	group,	𝑠/ 	is	the	number	of	focal	samples	taken	during	the	dyad’s	coresidence,	and	𝑓/ 	472	
is	the	average	number	of	females	in	the	group	during	the	dyad’s	coresidence.		473	

F-DSI	for	each	adult	female	dyad	in	each	year	is	the	z-scored	residual,	𝜀,	from	the	474	
model:		475	

log<𝑅/,1> = β<log<𝐸/,1>> + 𝜀	476	
where	𝑅/,1	is	the	number	of	grooming	interactions	for	dyad	d	in	year	y	divided	by	the	477	
number	of	days	that	the	two	individuals	were	coresident,	and	𝐸/,1 	is	observer	effort.			478	
	479	
Analysis	of	longitudinal	samples		480	
	 To	test	whether	changes	in	rank	predict	changes	in	relative	epigenetic	age	within	481	
individuals,	we	used	data	from	5	males	from	the	original	dataset	and	generated	additional	482	
RRBS	data	for	9	samples,	resulting	in	a	final	set	of	14	males	who	each	were	sampled	at	least	483	
twice	in	the	data	set,	when	they	occupied	different	ordinal	ranks	(mean	years	elapsed	484	
between	samples	=	3.92	±	1.94	s.d.;	mean	absolute	difference	in	dominance	ranks	=	6.86	±	485	
5.07	s.d.).		This	effort	increased	our	total	sample	size	to	N	=	286	samples	from	248	unique	486	
individuals.	To	incorporate	the	new	samples	into	our	analysis,	we	reperformed	leave-one-487	
out	age	prediction	with	N-fold	internal	cross	validation	at	the	optimal	alpha	selected	for	the	488	
original	N	=	277	samples	(alpha	=	0.1).	For	the	277	samples	carried	over	from	the	original	489	
analysis,	we	verified	that	age	predictions	were	nearly	identical	between	the	previous	490	
analysis	and	the	expanded	data	set	(R2	=	0.98,	p	=	2.21	x	10-239).		491	

Based	on	the	new	age	predictions	for	males	in	the	data	set	(N	=	144),	we	again	492	
calculated	relative	epigenetic	age	as	the	residual	of	the	best	fit	line	relating	predicted	age	to	493	
chronological	age.	We	then	used	the	14	males	with	repeated	DNA	methylation	profiles	and	494	
rank	measures	in	this	dataset	to	test	whether,	within	individuals,	changes	in	dominance	495	
rank	or	rank-for-age	explained	changes	in	relative	epigenetic	age	between	samples.		496	
	497	
Epigenetic	clock	enrichment	analyses	498	
	 To	evaluate	whether	CpG	sites	included	in	the	epigenetic	clock	were	enriched	in	499	
functionally	important	regions	of	the	baboon	genome	[32,	81],	we	used	two-sided	Fisher’s	500	
exact	tests	to	investigate	enrichment/depletion	of	the	593	epigenetic	clock	sites	in	(i)	gene	501	
bodies	and	exons,	based	on	the	Ensembl	annotation	Panu2.0.90;	(ii)	CpG	islands	annotated	502	
in	the	UCSC	Genome	Browser;	(iii)	CpG	shores,	defined	as	the	2,000	basepairs	flanking	CpG	503	
islands	(following	[32,	81,	82]);	and	(iv)	promoter	regions,	defined	as	the	2,000	basepairs	504	
upstream	of	the	5’-most	annotated	transcription	start	site	for	each	protein-coding	gene	505	
(following	[32,	81]).	We	also	considered	(v)	putative	enhancer	regions,	which	have	not	506	
been	annotated	for	the	Panu2.0	assembly.	We	therefore	used	ENCODE	H3K4me1	ChIP-seq	507	
data	from	humans	[83]	and	the	liftOver	tool	to	define	likely	enhancer	coordinates	in	508	
Panu2.0.			509	
	 We	also	tested	for	enrichment	of	clock	sites	in	regions	of	the	genome	that	have	been	510	
identified	by	previous	empirical	studies	to	be	of	special	interest.	First,	we	considered	511	
regions	that	likely	have	regulatory	activity	in	blood	cells,	defined	as	all	200	base-pair	512	
windows	that	showed	evidence	of	enhancer	activity	in	a	recently	performed	massively	513	
parallel	reporter	assay	[33].	We	used	liftOver	to	identify	the	inferred	homologous	Panu2.0	514	
coordinates	for	these	windows,	which	were	originally	defined	in	the	human	genome.	515	
Second,	we	defined	age-related	differentially	methylated	regions	(age	DMRs)	in	the	516	
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Amboseli	baboons	based	on	genomic	intervals	found,	in	previous	analyses,	to	contain	at	517	
least	three	closely	spaced	age-associated	CpG	sites	(inter-CpG	distance	≤	1kb),	as	described	518	
in	[32].	Third,	we	defined	lipopolysaccharide	(LPS)	up-regulated	and	LPS	down-regulated	519	
genes	as	those	genes	that	were	significantly	differentially	expressed	(1%	false	discovery	520	
rate)	between	unstimulated	Amboseli	baboon	white	blood	cells	and	LPS-stimulated	cells	521	
from	the	same	individual,	following	10	hours	of	culture	in	parallel	[28].	522	
	523	
Data	and	code	availabity	524	
All	sequencing	data	generated	during	this	study	are	available	in	the	NCBI	Sequence	Read	525	
Archive	(project	accession	PRJNA607996).	 	526	
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