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 25 

Abstract 26 

Elucidating the socio-ecological factors that shape patterns of epigenetic modification in long-27 

lived vertebrates is of broad interest to evolutionary biologists, geroscientists, and ecologists. 28 

However, aging research in wild populations is limited due to inability to measure cellular 29 

hallmarks of aging noninvasively. Here, we demonstrate that cellular DNA methylation (DNAm) 30 

profiles from fecal samples provide an accurate and reliable molecular clock in wild capuchin 31 

monkeys. Analysis of blood, feces, and urine samples from a closely related species shows that 32 

DNAm differentiates between species and different types of biological samples. We further find 33 

age-associated differences in DNAm relevant to cellular damage, inflammation, and senescence, 34 

consistent with hallmarks conserved across humans and other mammalian species, speaking to 35 

the comparative potential. By demonstrating that DNAm can be studied non-invasively in wild 36 

animals, our research opens new avenues in the study of modifiers of the pace of aging, and 37 

increases potential for cross-population and species comparisons. 38 

 39 

Introduction 40 

Aging is a complex and multifaceted process that impacts health, reproduction, and 41 

survival–three key components of Darwinian fitness. Strikingly, not all organisms age the same, 42 

resulting in diversity in the manifestation, onset, and pace of age-associated decline among 43 

similarly-aged individuals 1–3. Since chronological age does not fully explain the variability in age-44 
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related trajectories observed among individuals, composite measures–often from molecular 45 

readouts–that capture “biological age” have been developed to quantify variation in aging within 46 

and across individuals 4,5. By far, the most widely-used measures of biological aging are 47 

epigenetic clocks, which are composite measures of aging built from genome-wide DNA 48 

methylation (DNAm) profiles 4,6. Epigenetic clocks have proven to be extremely accurate in 49 

predicting chronological age across species (e.g., to within 3.3% error relative to the lifespan 7), 50 

and the difference between epigenetic and chronological age is associated with age-associated 51 

disease risk and mortality across species 4,8. Outside of its key role in aging 9, DNAm is also of 52 

broader interest due to its involvement in shaping phenotypic diversity and plasticity 10,11. 53 

However, to measure DNAm has heretofore required access to primary tissue samples (e.g., 54 

blood), which has limited the ability to study age and environmental effects on aging in many wild 55 

and non-model species. As a result, we are missing critical opportunities to understand the factors 56 

that pattern aging across the tree of life. Taking epigenetic research out of the lab and into the 57 

field would not only expand the taxonomic breadth of aging studies but also provide a unique 58 

opportunity to contextualize patterns of human longevity and aging within a broader eco-59 

evolutionary framework 12–14. 60 

Non-human primates are long-lived and among the most ecologically and socially diverse 61 

orders of mammals. They also have a large and growing pool of genomic resources available, 62 

making them a valuable taxonomic group for comparative studies across a range of disciplines 63 

from anthropology to biomedicine 15,16. Furthermore, given their close evolutionary history with 64 

humans, and broadly similar aging 17,18, they are a highly translationally relevant system for 65 

studying aging heterogeneity 19–24. Long-running studies of non-human primates, where 66 

molecular, social, and ecological environments are deeply documented, are providing key insights 67 

into the ecological and social determinants of health and aging 19,20,22–25. Naturalistic and wild 68 

systems in particular are demonstrating how changing environmental conditions, whether long-69 

lasting, such as drought, or abrupt, such as hurricanes, alter the links between socio-ecological 70 

predictors and the pace of aging 26,27. However, the promise of comparative studies will only be 71 

fully realized if a wide range of species living in diverse ecological contexts is represented. Since 72 

most wild populations cannot be sampled regularly for blood or other tissues, methods to quantify 73 

the epigenome using non-invasive samples are desperately needed. 74 

Here, we developed and optimized a protocol for quantifying DNAm in non-invasively 75 

collected fecal samples from wild white-faced capuchin monkeys (Cebus imitator), which are 76 

remarkably long-lived (up to 54 years in captivity, up to 37 years in the wild) for their small body 77 

size (3-5 kg) 28. We found epigenomic signatures of tissues derived from intestinal epithelium, 78 

demonstrating that we were capturing molecular signatures of gut epithelial cells from the host 79 

animal. Comparisons of DNAm from feces, urine, and blood from a captive population of a closely 80 

related capuchin species (Sapajus apella) (Fig. 1) revealed that epigenetic profiles varied by 81 

species, sex, and sample source. Using only DNAm measured from fecal samples, we developed 82 

a highly accurate epigenetic clock that predicted the chronological age of wild capuchins to within 83 

1.59 years (~3.5% of the capuchin lifespan)–which is on par with the highly accurate blood-based 84 

epigenetic clocks developed in humans. Finally, we found intriguing age-associated differences 85 

in methylation levels in homeobox genes and variations at genes involved in developmental 86 

processes, cell senescence, and immune responses, findings which are broadly consistent with 87 

previous research on aging in humans and other mammals 7,9,11,29. Taken together, our approach 88 
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shows that non-invasive measures are a highly informative source of DNAm data, and thus opens 89 

the door for study of epigenetic mechanisms in wild animals with high translational potential. 90 

 91 

 92 
Fig. 1. Study design and main outcomes. After collecting fecal samples from wild capuchins 93 

(Cebus imitator), and fecal, urine, and blood samples from captive capuchins (Sapajus apella), 94 

we used a flow-cytometry based cell sorting protocol 30 to enrich material recovered from fecal 95 
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samples in capuchin DNA and remove contaminants. We extracted DNA from sorted fecal cells, 96 

and from blood and urine samples directly, prior to enzymatic-based methylation sequencing. 97 

Following bioinformatics and quality check filtering on libraries, the final cohort included 116 98 

samples across three sample sources and two species. Fecal-derived methylation profiles exhibit 99 

signatures of gut tissue specificity, species, age, and sex, and can be leveraged to build accurate 100 

methylation clocks. Age-associated differences in methylation from fecal samples hint at 101 

conserved variation at a multitude of genomic locations involving housekeeping genes, 102 

developmental processes, and immune responses. Cebus and Sapajus artwork by Jordie 103 

Hoffman; organs icons from AdobeStock; created with Biorender.com. 104 

 105 

RESULTS 106 

Non-invasive sample-derived methylation signatures reflect tissue specificity 107 

We efficiently captured DNA methylation (DNAm) profiles from fecal samples by 108 

innovating a Fluorescence-Activated Cell Sorting (fecalFACS) 30 plus Twist Targeted Methylation 109 

Sequencing (TTMS)–a capture based approach that includes enzymatic methyl sequencing. 110 

TTMS uses probes designed to cover ~4 million CpG sites in the human genome, and we recently 111 

demonstrated that this human-based commercial probe set could capture ~2 million CpG sites in 112 

high-quality nonhuman primate samples 31 (Table S1). With this novel, combined approach, we 113 

covered 905,950 sites in fecal samples from wild-living Cebus, and 1,245,571 sites in fecal 114 

samples from captive-living Sapajus at a coverage of 5x in ≥75% of the samples in the set. This 115 

represents about half of the sites recovered from blood samples in this species 31, likely due to 116 

the more fragmented nature of DNA extracted from fecal samples. After filtering (Table 1), we had 117 

high coverage of ~1 million CpG sites: mean ± SD were 72.21X ± 87.70 in Sapajus blood, 184.41X 118 

± 255.53 in Sapajus fecal, 161.25X ± 219.63 in Cebus fecal, and 316.94X ± 521.37 in Sapajus 119 

urine samples. For joint analyses across all sample types, we focus on 711,737 CpGs with similar 120 

coverage across four datasets. 121 

Having effectively captured data from up to 1 million CpG sites in non-invasively collected 122 

samples, we next sought to confirm that the DNAm profiles sourced from different biological 123 

samples (Table 1) were consistent with the cell types we expected to be present in those samples. 124 

To do so we compared our data to a multi-tissue reference DNAm atlas (see Methods), focusing 125 

on promoters with cell-specific hypomethylation (table S2). For each sample type, we expected 126 

that the tissue of origin (e.g., blood cells in blood-derived samples) would show the strongest 127 

hypomethylation in that tissue’s marker genes (e.g., blood marker genes). As expected, blood 128 

samples displayed the anticipated low methylation at markers for blood cells (Fig. S1). Fecal-129 

sourced methylation profiles also conformed to expectation. They showed the lowest methylation 130 

at marker-specific loci of intestinal epithelium cells (Fig. 2A; 10,000 random permutation p-value 131 

= 0.03). We were unable to assess tissue of origin for the urinary samples due to the lack of a 132 

urinary tract atlas (Supplemental Results and Fig. S1). Together, these findings demonstrate that: 133 

(1) we can effectively quantify DNAm in non-invasively collected samples, and (2) the resulting 134 

methylation profiles reflect the biological signatures of the host cells in situ. 135 

 136 

Table 1. Final sample size and demographic characteristics of the cohorts analyzed in this 137 

study. For wild Cebus, dates of birth were known to within a few days to one month for 81% 138 
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(n=43 monkeys). The remaining monkeys’ ages were estimated based on morphological 139 

characteristics from the first time they were seen. 140 

Species Sample 
source 

N° 
samples 

N° 
individuals 

Sex (F/M) Age 
(mean±SD) 

Age 
range 

Environment 

Cebus 
imitator 

fecal 44 43 30/13 12.19 ± 
6.97 

0.54 - 
26.61 

wild 

fecal 11 10 3/7 ~18 ± 6 ~12 - 28 

Sapajus 
apella 

fecal 16 16 8/8 21.00 ± 
7.96 

9.90 - 
42.84 

captive 

blood 27 27 19/8 20.30 ± 
7.12 

9.96 - 
41.64 

urine 18 17 15/2 20.00 ± 
6.03 

10.29 - 
35.82 

 141 

 142 

 143 
Fig. 2. Fecal-derived DNAm profiles capture meaningful biological variation from tissue 144 

and species of origin. (A) DNAm profiles measured from non-invasively collected fecal samples 145 
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most closely match the DNAm hypomethylation patterns of intestinal epithelial cells. (B) Projection 146 

of methylation profiles along the first two components of a PCA. The first principal component 147 

significantly partitions samples by species (C), while PC2 differentiates fecal from non-fecal 148 

samples (D). P-values are reported from a linear regression including biological and technical 149 

covariates, followed by post hoc pairwise comparisons with correction for multiple testing for 150 

factors with more than two levels. In boxplots, boxes represent the interquartile range (IQ), which 151 

contains the middle 50% of the records, and a line across the box indicates the median. Vertical 152 

lines extend from the upper and lower edges of the box to the highest and lowest values which 153 

are no greater than 1.5 times the IQ range. Violin plots display the data distributions and full 154 

ranges. P-values are coded as * <0.05, ** <0.01, and *** <0.001. 155 

 156 

DNAm profiles from multiple tissue sources reflect species, sex, and age 157 

We tested whether DNAm profiles would carry meaningful biological signatures, namely 158 

of species, age, sex, and sample types. To that end, we used dimensionality reduction by PCA 159 

on all samples from individuals for which date of birth was known to within 1 month, thereby 160 

excluding 11 samples from 10 Cebus (table 1). The first two PCA components (cumulative 161 

variance explained = 41%) clearly separated the two species and fecal from non-fecal sample 162 

sources (Fig. 2B-D and tables S3-6). Age was included among all top regression models for PC2, 163 

demonstrating its important contribution to PC2. Sex was included in 40-50% of the top models 164 

for PC1 and PC2 (Fig. S2). These biological differences are unlikely to be due to technical 165 

variation: all models controlled for batch or enzymatic conversion effects (tables S3-6 and Fig. 166 

S3-4), and analyses included sites with equal mapping rates across the two species to control for 167 

reference genome bias (cf. Materials and Methods). Using a multinomial classifier, we could also 168 

identify the source of blood, fecal, and urine samples with 96% accuracy (Supplemental results 169 

and table S7). 170 

 171 

Accurate age prediction from fecal-derived DNAm profiles 172 

Given the individual-representative biological signatures in the DNAm profiles, we built 173 

two DNAm clocks to predict the age of samples based on methylation profiles using elastic net 174 

regression. The first clock was trained on all samples from both species (n = 105), maximizing 175 

sample size and incorporating data from blood, fecal, and urine samples. The clock was strongly 176 

predictive of age, estimating age to within a median of 2.88 years (Pearson’s r=0.82 between 177 

chronological and predicted age; Fig. 3A; tables S8-9). Predictions also showed strong reliability 178 

within-individuals, with a mean ± SD of 1.65 ± 0.75 years discrepancy across predicted ages for 179 

24 individuals for which we had samples from multiple biological sources. Prediction accuracy 180 

was robust to alternative preprocessing steps—such as excluding CpGs with species, sample 181 

source, or sex-associated methylation differences–(Methods; Supplemental Results and Fig. 182 

S5A). Overall, this performance has comparable accuracy to other DNAm clocks developed in 183 

wildlife from blood and other tissues 7,32,33. 184 

Currently, one of the most pressing challenges for the field is to develop entirely non-185 

invasive techniques for age estimation. To address this challenge, we built a second clock only 186 

from fecal samples from the free-ranging white-faced capuchins (Cebus imitator). Despite being 187 

developed with a smaller sample size, our Cebus fecal clock had even higher accuracy than our 188 

all-sample clock: with a correlation of 0.94 and median absolute error (MAE) 1.59 years (Fig. 3C; 189 
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Fig. S5B-6, tables S10-11 and Supplemental Results). When applied to the 11 samples from 190 

monkeys with morphologically estimated ages, the clock was less accurate than in monkeys of 191 

known age (MAE = 3.5 years; Supplemental Results and Table S12), likely due to imprecision in 192 

the morphological estimates. This discrepancy highlights the utility of non-invasive clocks for 193 

generating more accurate chronological age estimates, especially in older individuals critical to 194 

aging research. 195 

 196 
Fig. 3. Accurate age estimation from fecal-derived methylation profiles. (A) DNAm clock 197 

trained on blood, fecal, and urine samples in two capuchin species. Age predictions are from a 198 

leave-one-out validation. (B) Fecal DNAm clock in Cebus imitator estimates the age of wild living 199 

individuals from non-invasively collected samples. Model performance is indicated by Pearson’s 200 

correlation coefficient (r) and Median Average Error (MAE). The solid lines are the best-fit linear 201 

regression of predicted ages on chronological ages, while the dotted lines reflect the line of identity 202 

(x=y). 203 

 204 

Fecal-derived methylation profiles captures age-associated differences 205 

While methylation clocks serve as powerful biomarkers by leveraging a small set of CpG 206 

sites to predict chronological age, they do not directly illuminate the molecular mechanisms 207 

underlying aging. In contrast, identifying CpG sites with age-associated methylation differences 208 

can provide insights into gene regulatory changes that accompany aging. Importantly, the ability 209 

to generate such data from non-invasively collected samples unlocks new opportunities for 210 

comparative aging research across diverse animal species in natural settings. 211 

In service of this goal, we tested for age-associated DNAm differences at 75,521 CpG 212 

sites across 60 fecal samples (combined across species). Age was significantly associated with 213 

DNAm at 18% of tested sites (n=13,440, FDR < 0.1; table S13). To focus on regions with strong 214 

cis-regulatory potential, we mapped 9,754 of these sites to gene promoters (Fig. 4A; Table S14). 215 

These age-associated promoters were associated with genes involved in transcriptional 216 

regulation, intracellular signaling, immune function, and neural development. For instance, 12 of 217 

14 CpGs in the RPRM promoter—part of the p53 pathway and implicated in gastric cancer risk 218 
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via methylation-mediated silencing—were significantly hypermethylated 29,34,35. Gene ontology 219 

analysis further supported these patterns, showing that age-associated hypermethylation was 220 

enriched in pathways related to neural function, development, and cell differentiation (Fig. 4B, 221 

Fig. S7; Tables S15–17), consistent with previous reports 7. In contrast, hypomethylated sites 222 

included immune pathways such as TNF and type I interferon signaling, both of which are 223 

associated with chronic low-grade inflammation, or “inflammaging” 36,37 (Fig. 4B, Fig. S7; Table 224 

S15). 225 

To investigate potential regulatory impacts, we grouped CpGs into regions and assessed 226 

transcription factor binding site (TFBS) enrichment in regions hypermethylated with age. We 227 

identified 21 enriched and one under-enriched TFBSs (Fig. 4C), including several involved in 228 

development (ZBTB14, HES1, HES2), cell cycle control (TFDP1), and metabolism (NRF1, 229 

ARNT::HIF1A). Ten of these TFBSs overlapped with age-associated hypermethylated regions in 230 

rhesus macaques 38, suggesting some conservation across primates. No enriched TFBSs were 231 

found in hypomethylated regions in our dataset.  232 

As an external validation and to assess cross-species conservation, we compared our 233 

age-associated CpGs to those identified in a recent multi-tissue pan-mammalian epigenome-wide 234 

association study (EWAS) 7. Of 3,614 CpGs across 300 genes that could be compared, 69.1% of 235 

CpGs that increased in methylation with age in capuchins showed similar directional age-236 

associated differences in the pan-mammalian EWAS, and 73.8% of CpGs that decreased in 237 

methylation were similarly consistent (Fig. S8; Table S18). This strong concordance (Fischer’s 238 

Exact Test OR = 6.03, 95% Confidence Interval = 5.04 – 7.23, p-value <0.001), despite 239 

differences in species and tissue type, demonstrates that reliable insights into methylation can 240 

now be drawn for wild species using non-invasive methods. 241 
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242 
Fig. 4. Age is associated with differences in the methylome. (A) Age associated differences 243 

in methylation levels measured from fecal samples. CpG sites overlapping with promoters in the 244 

capuchin genome are represented on the forest plot, with sites reaching FDR <0.1 in black. Top 245 

age-associated sites are labelled for illustrative purposes, and include several homeobox genes 246 

and protein-coding genes involved in neoplasic processes. (B) GO enrichment analysis of the 247 

genes overlapping age-associated sites are shown. The 20 most enriched GO terms are shown 248 

on the rows, the dot sizes show the number of enriched genes, and the x axis shows the 249 

proportion of enriched genes relative to all genes associated with the GO term (absolute 250 

normalized enrichment score). All enrichments have Bonferroni-adjusted p-value <0.05. (C) 251 

Transcription factor binding site enrichment among regions exhibiting higher methylation levels at 252 

older ages. Transcription factors expressed in intestinal tissues, based on the Human Protein 253 

Atlas, are shown with a green dot. 254 

 255 

Discussion 256 

Understanding the modifiers of aging in wild animals depends on the ability to disentangle 257 

biological age from chronological age. Doing so requires access to long-term data from 258 
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individually monitored populations and biological samples that contain robust aging biomarkers. 259 

In this study, we leveraged DNA methylation (DNAm) profiles from cells sorted from non-260 

invasively collected fecal samples in a population of wild capuchin monkeys that has been studied 261 

continuously for over 40 years 28. We show that chronological age can be estimated with high 262 

accuracy—median error of 1.59 years—using fecal DNAm, a substantial improvement over earlier 263 

fecal-based efforts in other species, including dolphins 33 and mice 32, and a microbiome age clock 264 

in wild baboons 39. Our findings also highlight species-specific and tissue-specific signatures in 265 

DNAm, distinguishing not only between two closely related capuchin species but also between 266 

feces, blood, and urine samples. These results open new possibilities for non-invasive research—267 

from estimating the ages of unmonitored individuals to exploring how social, environmental, and 268 

physiological factors shape the pace of biological aging in different tissues. 269 

Beyond age prediction, we identified thousands of CpG sites with methylation levels that 270 

change significantly with age, particularly in gene promoters. These sites were enriched in 271 

functional pathways tied to development, neural function, and cell differentiation, consistent with 272 

established patterns of epigenetic aging. Conversely, hypomethylated sites with age were 273 

enriched in immune-related pathways such as TNF and interferon signaling, implicating 274 

processes like inflammation and immune activation—both well-documented hallmarks of aging 9. 275 

Notably, these patterns were broadly conserved when compared to a recent multi-tissue, pan-276 

mammalian EWAS of age 7, reinforcing the comparative value of our findings. 277 

The parallels between our results and those of cross-species EWAS studies support the 278 

growing view that aging involves shared molecular signatures, including hypermethylation of 279 

genes that regulate cell integrity and transcription, and hypomethylation of immune-related genes. 280 

Some of these changes may contribute to processes like senescence or inflammation that are 281 

implicated in aging and age-related diseases, including cancer 40. The observed enrichment in 282 

developmental pathways also aligns with evolutionary theories suggesting that genes beneficial 283 

in early life may have detrimental effects later in life 41,42. Future work to characterize epigenetic 284 

dynamics during development and early life will be key to understanding the origins of variation 285 

in aging trajectories. 286 

There is growing evidence that environmental factors shape the pace of aging 43, yet we 287 

still know relatively little about which factors are the most impactful, which individuals are more 288 

susceptible, and which factors may be protective. Long-term studies of wild primates are well-289 

positioned to address this gap, having already linked physical health, hormone levels, social 290 

dynamics, and early life adversity to later-life outcomes 19,20,22,24,28,44,45. Epigenetic data—291 

especially when derived from blood—has begun to reveal how such exposures leave molecular 292 

traces 26,38. However, blood is rarely available from wild populations. Our development of non-293 

invasive methods for generating high-resolution DNAm profiles from feces dramatically expands 294 

the reach of this approach, enabling comparative and translational studies across species and 295 

environments 33,46,47. 296 

DNAm is known to reflect both phylogenetic distance and tissue identity 11,48. For example, 297 

comparisons across humans, chimpanzees, and macaques have shown that methylation profiles 298 

cluster strongly by species and organ 49. We found that non-invasively collected fecal and urine 299 

samples retain such biological signals, demonstrating that field conditions, including sample 300 

collection and storage, do not obscure species- and tissue-specific methylation signatures. 301 
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Standardizing protocols across research teams will be important to further optimize reproducibility 302 

and sensitivity under variable field conditions.  303 

We also confirmed that fecal DNAm profiles exhibit canonical hypomethylation at CpG 304 

sites specifically associated with epithelial cells of the human lower gastrointestinal tract 48. 305 

Although DNA from feces and urine likely includes a mix of epithelial cells, immune cells, and cell-306 

free DNA, methylation profiles appear largely preserved 48,50. Because DNAm varies by cell type, 307 

identifying cellular composition will be essential for accurate biological interpretation. This opens 308 

the door to both broad systemic questions and more targeted studies of gut physiology, aging, 309 

microbiome interactions, and related metabolic conditions 25,26,38,51—many of which are central to 310 

modern human disease. 311 

 Overall, we have shown that non-invasively collected fecal samples provide a reliable 312 

source of DNAm profiles for the study of aging in wild populations. The addition of epigenetic 313 

processes to the toolkit available to field research has the potential to bolster our understanding 314 

of the modifiers of the pace of aging across a range of environments. The inclusion of less-315 

represented species in aging research with high translational relevance is necessary to maximize 316 

the impact of findings related to pace of aging. More broadly, non-invasive epigenetic research 317 

will accelerate discovery across domains, from developmental plasticity and resilience to 318 

environmental stressors to the evolution of aging in natural contexts. 319 

 320 

Materials and Methods 321 

Methylation profiles using non-invasive sampling 322 

Ethics and Authorization 323 

Fecal samples from wild capuchins in Costa Rica were collected under permits issued by 324 

the Animal Care Committee (ACC) of the University of Calgary in Canada (AC19-0167/AC24-325 

0021), and by the Sistema Nacional de Áreas de Conservación (SINAC) and the Área de 326 

Conservación Guanacaste (ACG: R-SINAC-ACG-PI-059-2022/ ACG-PI-033-2023ACG-PI-011-327 

2024/, and CONAGEBIO (R-013-2022-OT-CONAGEBIO/R-042-2023-OT-CONAGEBIO) in 328 

Costa Rica. Fecal samples were imported to Canada under Canadian Food Inspection Agency 329 

(CFIA) permits A-2023-06194-1 and A-2022-05488-4.  330 

Blood, fecal and urine samples were collected from captive brown capuchins (Sapajus 331 

apella) at Georgia State University, under IACUC protocol (A20018). Fecal and urine samples 332 

were imported to the University of Calgary, Canada, under CFIA permit A-2024-03380-4.  333 

 334 

Study populations and sampling 335 

We collected fecal samples from 53 habituated, wild white-faced capuchins (Cebus 336 

imitator) in Sector Santa Rosa, Área de Conservación Guanacaste, Costa Rica. Capuchins in this 337 

population have been studied nearly continuously since the Santa Rosa Primate Project was 338 

initiated in 1983 (reviewed in 28). All individuals were individually identified through fur patterns, 339 

scars, and natural morphological variation. We sampled 20 males and 33 females. The majority 340 

of individuals (42/53) have been followed since birth and their date of birth is known to within 1 341 

day - ca. 1 month. One female first seen as an infant had only a known year of birth. We 342 

considered ages to be known for these 43 individuals. Ages ranged from 6 months to 26 years 343 

old in males, and from 1 year old to 24 years old in females. Other individuals (males N = 7, 344 

females N=3) were tracked from the time they were first observed as subadults or adults (for 345 
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males, typically when they immigrated into the study population; table S1). An experienced 346 

researcher estimated the ages of these 10 individuals, and we excluded them from all analyses 347 

including age as a predictor.  348 

 Approximately 1 g of feces was collected from forest substrates immediately following 349 

defecation by trained and experienced researchers wearing nitrile gloves and a face mask, and 350 

transferred into a 5 mL conical tube containing 2.5 mL of RNAlater. The samples were stored at 351 

room temperature until they were shipped to the University of Calgary for processing.  352 

Brown capuchins (Sapajus apella) were members of the captive capuchin monkey colony 353 

at Georgia State University. This colony was originally formed in 2006, and currently contains 8 354 

males (ages 11-26 at the time of sample collection) and 20 females (ages 22-42 at the time of 355 

sample collection). Monkeys live in mixed sex social groups, excepting one bachelor pair of 356 

males, and most monkeys have lived with their group mates their entire lives. Each group, 357 

including the bachelor pair, has a dedicated indoor room and outdoor yard, to which they have 358 

access except during voluntary testing and inclement weather. Monkeys are fed a species typical 359 

diet including monkey chow, fruits, vegetables, and treats, and monkeys have access to water ad 360 

libitum. Urine and fecal samples were collected from clean trays placed beneath the monkeys’ 361 

testing areas during voluntary behavioral and cognitive testing for other research. Samples were 362 

placed in 5 mL of RNAlater and stored at room temperature until they were shipped to the 363 

University of Calgary for processing. Monkeys are never restricted from food, water, treats, 364 

outdoor access, or social contact to motivate participation in research; as a result, urine and fecal 365 

samples were only available from monkeys who chose to participate in testing. Whole blood 366 

samples were collected during the annual physicals conducted under anesthesia using 13 mg/kg 367 

Ketamine, delivered intramuscularly by the veterinarian team. Blood samples were stored at 4ºC 368 

upon collection, and shipped to Arizona State University where they were flash frozen into 0.5 mL 369 

aliquots and stored at -80 ºC.  370 

 371 

Flow cytometry 372 

We followed our previously validated method for sorting primate cells from the fecal matrix 373 

using flow cytometry 30, with a few modifications to optimize cell recovery. In brief, we 374 

homogenized the fecal samples in RNAlater by vortexing for 30 seconds, then centrifuged at 375 

1,727 rpm for 15 seconds to pellet the larger material. We transferred the supernatant to a 15 mL 376 

tube and filled it with Dulbecco’s phosphate-buffered saline (DPBS). We then filtered the 377 

supernatant through a 70 μm filter into a 50 mL tube. We transferred the resulting filtrate into a 378 

15 mL tube and centrifuged at 1,500 rpm for 5 minutes to pellet the cells. We washed the pellet 379 

twice with 13 mL of DPBS. Then, resuspended the pellet in 300 μL of DPBS and filtered the 380 

solution again through a 35 μm filter into a 5 mL FACS tube. We prepared a negative control by 381 

mixing 250 μL of DPBS with 50 μL of the cell solution to account for autofluorescence. Next, we 382 

added 250 μL of 12 μM DAPI stain and 3 μL of AE1/AE3 Pan cytokeratin Alexa Fluor 488 antibody 383 

(ThermoFisher: 53-9003-82). We incubated the samples at room temperature for 15 minutes, 384 

followed by an incubation at 4 °C for 15 min to 1 hour, depending on time to initiate flow cytometry. 385 

The cells were isolated using a BD FACSAria Fusion (BD Biosciences) flow cytometer at 386 

the University of Calgary Flow Cytometry Core with BD FACSDiva™ Software. Background 387 

fluorescence and cellular integrity were assessed by processing the negative control sample 388 

before all other prepared fecal samples. For each sample, we first gated the target population 389 
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based on forward- and side-scatter characteristics to minimize the presence of bacteria and 390 

cellular debris. Second, additional secondary and tertiary gates were applied to eliminate cellular 391 

agglomerations. Finally, we selected cells with antibody or DNA fluorescence that exceeded 392 

background levels. In instances where staining was ineffective, sorting was performed using only 393 

the first three gates. 394 

 395 

DNA extraction and quality assessment 396 

Post sorting, we extracted DNA from fecal cells using the Arcturus PicoPure DNA 397 

Extraction Kit (Thermo Fisher Scientific, Kit # 0103), according to the manufacturer's instructions. 398 

We extracted DNA directly from urine (Sapajus only) stored in RNAlater using the same kit and 399 

protocol. Following the extractions, a cleanup step was carried out using Sera-Mag Speedbeads 400 

(Fisher Scientific, catalog # 09-981-123) at a 1.5:1 ratio. We extracted DNA from blood samples 401 

(Sapajus) at Arizona State University using the Qiagen DNeasy Blood & Tissue kits (Qiagen 402 

#69581) following the manufacturer’s protocols. 403 

 404 

TMS library preparation and sequencing 405 

We prepared 147 libraries (cf. Table 1 in main text) for TMS library preparation and 406 

sequencing. Detailed descriptions of the protocols can be found in 31. In brief, we used 200 ng of 407 

DNA as the input for library prep with NEBNext Enzymatic Methyl-seq kit (P/N: E7120L). Library 408 

prep was modified to eight cycles of PCR for the final library amplification followed by a 0.65X 409 

SPRI bead cleanup. Libraries were then combined in equimolar amounts into pools of 12 (total 410 

concentration of 2,000 ng per pool) for capture using the Human Methylome panel from Twist 411 

Biosciences following the manufacturer’s instructions (P/N: 105521). Post-hybridization libraries 412 

were then sequenced on the NovaSeq 6000 at the Vanderbilt Technologies for Advanced 413 

Genomics (VANTAGE) Core using 150 bp paired-end sequencing, with a target of 30-50 M 414 

paired-end reads per sample.  415 

 416 

Sequence alignment and processing 417 

Paired-end FASTQ files were trimmed using Trim Galore! (function trim_galore with the 418 

flag --paired) https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ and mapped in 419 

bismark 52 (functions bismark, --score_min L,0,-0.6 -R 10 \ -p 4) to the reference genome for the 420 

Panamanian White-faced Capuchin Cebus_imitator-1.0 421 

(https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_001604975.1/). Cytosine methylated and 422 

total counts were extracted with functions bismark_methylation_extractor and coverage2cytosine 423 

(flag --merge_CpG). Data quality assessments were performed using MultiQC (v1.7; Illumina). 424 

We assembled count data using the package bsseq (function read.bismark) 53 for further 425 

processing and analysis in RStudio version 4.4.0 54. We first removed samples with a conversation 426 

rate >2% at CHH or CHG (n=1), then those with rate of mapping to the reference genome <50% 427 

were excluded from further analysis (n=19 samples: 6 fecal Cebus, 6 fecal Sapajus, and 8 urine) 428 

as well as one library with excessively high sequencing depth. Finally, we removed duplicated 429 

libraries (n = 10 excluded). The final sample size was 71 fecal, 27 blood, and 18 urine samples 430 

(table 1). 431 

The rate of mapping tended to be lower for Sapajus samples relative to Cebus samples, 432 

which was expected as our reference genome was the Cebus genome assembly (Wilcoxon rank 433 
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sum test W = 2035, p-value = 0.048, fig. S3). To ensure that any differences in the methylomes 434 

between species or sample sources would not result from this bias, we filtered CpGs in the four 435 

datasets separately (Cebus-fecal, Sapajus-fecal, Sapajus-urine, and Sapajus-blood) using a 436 

threshold of 5x in ≥75% of the samples in the set. This ensured that all CpGs included in the final 437 

data had adequate coverage in every species-sample-source subset. Then, we intersected the 438 

subsets for common CpG sites according to the type of data included for each analysis. For 439 

example, analyses using blood, feces, and urine used the intersection of the four independently 440 

filtered datasets, while analyses using only feces used the intersection of the two fecal sample 441 

subsets. 442 

 443 

Methylation signatures of tissue specificity 444 

DNA methylation (DNAm) patterns are highly specific to cell type, such that measurements 445 

taken from bulk tissue or blood samples largely reflect the composition of cell types present in 446 

those samples. This cell-type specificity poses a challenge when analyzing unconventional media 447 

such as fecal and urine samples, where the diversity and representation of cell types are less 448 

documented. We anticipated that fecal-sourced host cells would be derived primarily from the 449 

intestinal epithelium. However, we wanted to compare the methylation profiles measured from 450 

fecal samples to DNAm single-cell profiles to test this assumption and validate our methods. We 451 

extracted the top 1000 cell-specific markers identified by the HumanMethylationAtlas 48 for all cell 452 

types. We focused on the cell-specific hypomethylated loci, because they represent the vast 453 

majority of markers identified by Loyfer and colleagues 48. Accordingly, a cell-specific marker is a 454 

genomic region (one or more sites) which exhibit markedly lower methylation levels in the cell 455 

type compared to all other cell types. 456 

Because of the lack of chromosome-level assembly for the capuchin genome, but 457 

availability of curated information on genes (gene transfer format or gtf), we focused on annotated 458 

gene promoters. We used Cebus_imitator.Cebus_imitator-1.0.113.gtf to extract the location of 459 

genes annotated in both the human atlas and the capuchin genome. We passed the bed file 460 

coordinate of promoters to the function getCoverage() in bsseq with type=”Cov” and “M” with 461 

what=”perRegionTotal”, to calculate the coverage and methylation counts over entire promoters. 462 

A total of 269 combinations of cell type-promoters from the HumanMethylationAtlas could be 463 

associated with 191 promoter sequences from the capuchin genome (table S2). This implies that 464 

some promoters were inevitably associated with several cell types (here, promoters were on 465 

average considered as hypomethylated markers for mean ± sd = 1.31 ± 0.64 cell types). We 466 

calculated promoter mean percent methylation across all samples and compared the mean 467 

percent methylation of promoters according to their reference cell-specificity in the 468 

HumanMethylationAtlas. We calculated the average difference in percent methylation at 469 

promoters annotated as markers for intestinal epithelia versus all other cell types, and used 470 

10,000 permutations of which promoters were assigned as markers of epithelia to create a 471 

random distribution of difference in percent methylation between a set of markers and the 472 

background of all other cell types. The one-tailed p-value was calculated by comparing the 473 

observed and randomized difference. 474 

To further validate our approach, we repeated this procedure with blood samples by 475 

investigating the top markers associated with circulatory immune cells and other cell types 476 
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available from the HumanMethylationAtlas. In total, 231 cell type-promoters from the human data 477 

could be matched to 165 promoters in capuchins (1.32 ± 0.63 promoter to cell types). 478 

 479 

Biological variables recovered from multidimensional analysis of methylation profiles 480 

We investigated correlates of methylation profiles using dimensionality reduction with 481 

Principal Component Analysis (PCA). We performed PCA using prcomp(scale = TRUE) on the 482 

matrix of percent methylation (n = 116 samples) using sites covered across all samples (n = 483 

1,421). To investigate the possible influence of technical artifacts on the biological signal, we 484 

visualized the correlations between PC1 and PC2 with sample average percent methylation, 485 

conversion rate at CHH, conversation rate at CHG, mapping efficiency, and batch. To assess the 486 

relative explanatory power of the biological and technical covariates, we built linear regression 487 

models for PC1 and PC2. The Pearson correlation between CHG and CHH methylation (a proxy 488 

for enzymatic conversion efficiency) was 0.97, so we only retained CHG, which exhibited greater 489 

variance, to avoid issues with multicollinearity. Variance Inflation Factors further revealed that 490 

batch number could not be included in a model also including other technical covariates. 491 

Therefore, we created two versions of the models: one with batch (as factor), and the other with 492 

mapping efficiency, average percent methylation, and conversation rate at CHG. Species, sample 493 

source, sex, and age were included in both models. Covariates were z-transformed and models 494 

fitted with lm(). We note that some VIFs remained high for species, batch, and sample source, 495 

suggesting that fully disentangling the relative influence of these three parameters remains 496 

challenging. We then performed AICc-based model comparison using the MuMIn 55 dredge(rank 497 

= ”AICc”) function. We report the proportion of models in which predictors were included among 498 

all models within ΔAICc = 10 from the best model. To summarize the outcomes, species was 499 

included in all competing best models for PC1, and sample source was included in all the 500 

competing best models for PC2, which supports the main findings from the PCA visualization. 501 

Loadings of batches on PC1 and PC2 are presented in fig. S4 (tables S3-6). 502 

 503 

Multinomial classifier of sample source 504 

To examine further the discriminatory power of sample source (blood, feces, urine) on 505 

methylation profiles, we used a multinomial regression algorithm in glmnet 56,57 with a leave-one-506 

out validation. The model was trained using cv.glmnet() on all samples but one by mapping 507 

sample source against methylation profiles at a set of 106,099 CpG sites with coverage across 508 

the four species-sample-source subsets after imputation with missMDA 58. The penalization 509 

parameter lambda was internally determined by 10 cross-fold validation, and we used predict(type 510 

= ”response”) with lambda.min on the test sample. The test sample is assigned probabilities that 511 

it originates for one sample source or the other. As covariates are not included in glmnet, this 512 

effectively tests the ability to determine sample source despite noise in the methylation profiles 513 

associated with uncorrected sex, age, or technical batch effects. 514 

 515 

Age clocks built from fecal DNA methylation profiles 516 

We used an elastic net regression in glmnet with a leave-one-out-validation (LOOV) 517 

procedure to achieve the least biased possible estimation of chronological ages based on 518 

methylation profiles. A first set of models were fitted on all samples (four species-sample-source 519 

combinations, n = 105) to assess model performance on a set of heterogeneous sample sources 520 
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while maximizing sample size. A second set of models were fitted on fecal samples from the wild 521 

Cebus of known age (n = 44) to evaluate performance on a smaller sample size of homogeneous 522 

samples that speak to our goal of developing non-invasive epigenetic clocks. For both scenarios, 523 

we started by imputing missing values using missMDA 58 (function imputePCA with scale = TRUE 524 

and ncp = 2 as determined by estim_ncpPCA with scale = TRUE, ncp.min = 0, ncp.max = 5, 525 

method.cv = ”Kfold”). Imputation was done independently in each subset, after excluding low 526 

variance sites constitutively hypo (average <0.1) or hypermethylated (average > 0.9). From there 527 

on, we varied the data preparation process by: i) transforming or not age before sexual maturity, 528 

here 5 years old (models Classic and AgeTransfo), ii) normalizing data or not with a Yeo-Johnson 529 

transformation, in combination or not with the age transformation (models Norm and 530 

AgeTransfoNorm), iii) pre-selecting sites correlating with age >0.2, before normalization and age 531 

transformation (models Corr and CorrAgeTransfoNorm), and iv) pre-selecting for sites exhibiting 532 

no significant difference in methylation levels according to species and sample sources as found 533 

from binomial mixed models (model NoBiasAgeTransfoNorm, see details below) for the clock 534 

using all sample sources. 535 

For all LOOV runs, the best penalization parameter lambda was determined internally 536 

using 10 cross-fold validation, and we ran iterations across values of alpha between 0 and 1 (i.e., 537 

spanning the space from ridge to lasso regression) and chose the alpha minimizing mean squared 538 

error (MSE). Model performance is reported based on Pearson’s correlation coefficient and 539 

Median Average Error (MAE) expressed in years. For 24 individuals repeatedly sampled (one 540 

female Cebus, 15 female and eight male Sapajus) giving a total of 57 samples (22 blood, 18 fecal, 541 

17 urine), we calculated the level of consistency across predicted ages based on the generated 542 

epigenetic clock by calculating for each individual the standard deviation of the absolute error 543 

between chronological age and predicted age. We report the mean and standard deviation of this 544 

within-individual standard deviation across the 24 individuals. 545 

 546 

Differential methylation between species, sample source, and sex 547 

We tested for loci differential methylation using MACAU implemented in PQLseq 59–61. Our 548 

aim was to identify and remove loci (N = 69,353) which may lower clock’s performance due to 549 

confounding effects of species, sample source, or sex on methylation levels. We ran binomial 550 

mixed models on data generated from fecal samples to test for a difference between Cebus and 551 

Sapajus, while accounting for dummy-coded sex and age (models converged for N = 42,939 552 

CpGs). Among samples collected from Sapajus, we tested for a difference in blood versus fecal 553 

and urine, while accounting for dummy-coded sex and age (models converged for N = 58,697 554 

CpGs). Finally, we tested for an effect of sex among fecal samples collected in Cebus, while 555 

accounting for age (models converged for N = 52,623 CpGs). All models included an identity 556 

matrix as a relatedness matrix, with relatedness set to 1 for samples from the same individual. 557 

For each set of results and after inspecting the distribution of p-values, we calculated q-values 558 

using the package qvalue 62 which corrects for the number of tests performed. We did not add 559 

batch effects because our aim here is to test for an effect of species on data as raw as possible 560 

which is the format passed on to glmnet. From all three procedures, we extracted 20,313 sites 561 

which exhibited q-values > 0.05 in all cases (i.e., not statistically influenced by sex, sample source, 562 

or species) for the NoBiasAgeTransfoNorm elastic net regression model. 563 

 564 
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Age-associated differences in fecal methylation profiles 565 

To test for loci differential methylation with age, we followed a similar procedure to the one 566 

described for species, sample source, and sex. Models estimating the effect of age on fecal 567 

methylation profiles included dummy-coded sex, species, and batch as covariates, and an identity 568 

matrix. Models that did not converge (59%) were excluded from downstream analysis, leaving 569 

75,521 loci (table S10). Here again q-values were calculated from p-values 62. To identify putative 570 

age-associated differences in gene expression with age, we more closely examined a subset of 571 

9,754 sites which overlapped with promoters from the capuchin gtf annotation (table S10). The 572 

genomic location for the promoters were extracted from the capuchin’s gtf file using 573 

makeTxDbFromGFF() and genes() in the package GenomicFeatures, and 574 

promoters(upstream=2000, downstream=200) from IRanges. We intersected these genomic 575 

coordinates with results from our analysis on age-associated changes in capuchin (function 576 

findOverlap() with default settings). To allow comparisons with previous panmammalian studies, 577 

we also extracted the meta-analysis effect sizes for age at CpG overlapping gene promoters from 578 

Lu et al. 7 and annotated our results at overlapping promoters. 579 

 580 

Pathway enrichment 581 

 To test for enrichment of molecular and cellular pathways, we focused on n = 52,887 CpGs 582 

overlapping genes. The effect sizes were averaged across CpGs overlapping the same 583 

promoters, leaving 5,239 genes which we ranked by effect sizes. We performed pathway 584 

enrichment analyses using fgsea() from the eponym package 63,64 (arguments minSize = 15, 585 

maxSize = 500, nPermSimple = 10000, eps = 0.0), with the subcollection Gene Ontology 586 

Biological Processes, Cellular Components, and Molecular Functions retrieved from 587 

msigdbr(species = "Homo sapiens") 65,66. For plotting, we simplified the results using 588 

collapsePathways() on pathways reaching an FDR <0.05 and show the top 20 pathways ranked 589 

by absolute normalized enrichment scores. 590 

 591 

Transcription factors enrichment 592 

 To be able to test for the presence of DNA motifs known to be associated with the binding 593 

of transcription factors, we first grouped single CpGs into differentially methylated regions (DMRs) 594 

using the pipeline from 38,51 available at (https://github.com/mwatowich/Immune-gene-regulation-595 

is-associated-with-age-and-environmental-adversity-in-a-nonhuman-primate). DMRs were 596 

defined as segments including a higher-than-expected density of significantly age-associated 597 

sites exhibiting consistent direction of change. First, we determined the number of CpG sites 598 

loosely associated with age (FDR<0.1) within 1,000 base pairs of an age-associated site 599 

(FDR<0.05) at chance level by randomly permuting p-values among CpGs (median of three 600 

loosely age-associated CpGs per DMR). Therefore, we kept from the real data DMRs with at least 601 

four loosely age-associated sites. Then, DMRs were removed if fewer than 75% of the CpGs in 602 

the DMR or significant CpGs at the loose threshold were in the same direction. We filtered nine 603 

DMRs which were longer than 99% of the distribution, leaving 876 DMRs, which were 475 ± 433 604 

base pairs long on average (range = nine – 2,149), and included 18 ± 15 CpGs (range = four – 605 

117), of which 11 ± 8 and 8 ± 7 were loosely and strictly age-associated respectively. We defined 606 

a background set of DMRs by applying no threshold on significance and concordance of age-607 

associated changes, and further removing the set of previously identified DMRs from the 608 
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background set. Finally, we filtered background regions longer than the longest DMR (n=87 609 

regions removed) to obtain more homogeneous sets (4,374 background regions of average length 610 

455 ± 420, range = 10 – 2,230). 611 

 We tested for transcription factors binding site motifs (TFBSs) enrichments using 612 

monaLisa 67. We downloaded vertebrates’ transcription factor binding site position weight 613 

matrices from Jaspar 2020 68. Region sequences were extracted from the capuchin genome 614 

converted to a FAFile using getSeq() from BSgenome 69. We compared hypermethylated DMRs 615 

(n = 844) and hypomethylated DMRs (n = 32) to the background set. TFBSs with adjusted p-value 616 

< 0.001 are shown. 617 

 TFs expression is tissue-dependent, which implies that enrichment for TFBSs motifs at 618 

differentially methylated sites in the cells from the intestinal tract are likely to have consequences 619 

for TFs expressed in that tissue. Using the Human Protein Atlas 70 (https://www.proteinatlas.org/), 620 

we considered that a TFs was likely to be expressed in the gastrointestinal tract if the protein 621 

expression score was medium or high or if the RNA expression consensus listed digestive tissues 622 

among the top third of the tissues. 623 

 624 

Overlap with age-associated sites in pan mammalian EWAS of age 625 

We extracted the top 1000 CpGs exhibiting higher and 1000 CpGs exhibiting lower 626 

methylation with age in an EWAS across several tissues and species of eutherian mammals from 627 

Lu and colleagues (2023) 7. We reasoned that these top age-associated sites are more likely to 628 

be shared broadly. Because we could not map CpGs from the pan mammalian array to the 629 

capuchin genome directly, we relied on gene annotations. Specifically, we used gene names from 630 

the pan mammalian data to extract the genomic location for the promoters and exons present in 631 

the capuchin’s gtf file (package IRanges functions promoter() and exonsBy() with by = gene). We 632 

intersected these genomic coordinates with results from our analysis on age-associated changes 633 

in capuchin (function findOverlap() with default settings), which returned 3,772 CpGs overlapping 634 

with a gene annotation. We did not apply any filtering for significance as we are interested in the 635 

consistency of the direction of difference broadly. Also, note that some genes could be associated 636 

with several CpGs, which may or may not differ in the same direction with age. To compare the 637 

direction of difference in the capuchin and pan mammalian dataset, we had to ensure that each 638 

gene would be represented by a unique direction of difference with age in the pan mammalian 639 

data. Genes that were unambiguously associated with effect sizes all in one direction were first 640 

selected (n = 786). Then, for genes associated with several CpGs changing in opposite directions 641 

(n = 65), we calculated the proportion of sites that are higher with age. After visual inspection of 642 

the distribution, we decided to keep sites exhibiting a proportion of positive differences <25% and 643 

>75% (n = 30). Sites falling between these boundaries were excluded. We assigned the direction 644 

of difference of the majority of CpGs overlapping the gene. This procedure allowed us to assign 645 

either a positive or negative direction of difference with age for 816 genes out of the 851 originally 646 

present in the pan mammalian dataset. We then intersected the datasets to compare the direction 647 

of difference for 300 genes common to both datasets (n = 3,614 CpGs, with an average 12.0 ± 648 

14.6 CpGs overlapping a gene in capuchins) (table S18). 649 
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