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ABSTRACT
Causal mediation analysis studies how the treatment effect of an exposure on outcomes is
mediated through intermediate variables. Although many applications involve longitudi-
nal data, the existing methods are not directly applicable to settings where the mediators
are measured on irregular time grids. In this paper, we propose a causal mediation method
that accommodates longitudinal mediators on arbitrary time grids and survival outcomes
simultaneously. We take a functional data analysis perspective and view longitudinal me-
diators as realizations of underlying smooth stochastic processes. We define causal esti-
mands of direct and indirect effects accordingly and provide corresponding identification
assumptions. We employ a functional principal component analysis approach to estimate
the mediator process, and propose a Cox hazard model for the survival outcome that
flexibly adjusts the mediator process. We then derive a g-computation formula to ex-
press the causal estimands using the model coefficients. The proposed method is applied
to a longitudinal data set from the Amboseli Baboon Research Project to investigate
the causal relationships between early adversity, adult physiological stress responses, and
survival among wild female baboons. We find that adversity experienced in early life
has a significant direct effect on females’ life expectancy and survival probability, but
find little evidence that these effects were mediated by markers of the stress response in
adulthood. We further developed a sensitivity analysis method to assess the impact of
potential violation to the key assumption of sequential ignorability.

Key words: Causal Inference, Functional Principal Component Analysis, Mediation,
Functional Data
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1 Introduction

A common pursuit in biological studies is to understand mediation, that is, the causal
relationships between an exposure or treatment Z, an outcome Y , and an intermediate
variable (i.e. mediator) M that lies on the causal path between Z and Y . As a motivating
example, consider a study where we want to investigate the causal effect of early life ad-
versity on survival outcomes, and how that effect is mediated through hormonal markers
of the stress response in wild adult baboons. The classic mediation analysis method is
the Baron-Kenny method, which fits two linear structural equation models (SEMs)—one
on Y predicted by Z,M and one on M predicted by Z—and interprets specific model
coefficients as causal effects (Baron and Kenny 1986; MacKinnon 2012). Recently there
is a surge of research in combining the potential outcome framework for causal infer-
ence (Neyman 1923; Rubin 1974) and the Baron-Kenny method (Robins and Greenland
1992; Pearl 2001; Sobel 2008; Imai et al. 2010b; Tchetgen Tchetgen and Shpitser 2012;
Daniels et al. 2012; VanderWeele 2016). In particular, Imai et al. (2010b) proved that the
Baron-Kenny estimator can be interpreted as a causal mediation estimator given a set of
structural assumptions under the potential outcome framework. It has since led to many
new methodological advancements and applications to disciplines beyond the traditional
domains of SEM, including imaging, neuroscience, and environmental health (Lindquist
and Sobel 2011; Lindquist 2012; Zigler et al. 2012; Kim et al. 2017, 2019). Advanced
Bayesian modeling for mediation analysis has been also been developed (Daniels et al.
2012; Kim et al. 2017, 2018). Comprehensive reviews on causal mediation analysis are
given in VanderWeele (2015) and in Nguyen et al. (2020).

Traditionally in mediation analysis the exposure Z, mediator M and outcome Y are
all measured at a single time point. Recent studies increasingly involve time-varying
data, where at least one of the triplet (Z,M, Y ) is measured repeatedly and the data
pattern varies in specific applications. For example, in health studies, subjects’ clini-
cal information is often measured in multiple scheduled visits. However, the majority
of causal mediation research with time-varying data focuses on regularly observed data
(van der Laan and Petersen 2008; Roth and MacKinnon 2012; Lin et al. 2017a; Vander-
Weele and Tchetgen Tchetgen 2017), and the analysis often utilizes marginal structural
models (Robins et al. 2000). Another line of research takes a functional data analysis
perspective (Ramsay and Silverman 2005) when the observations are made on a dense
grid. For example, motivated by applications in neuroimaging, Lindquist (2012) and
Zhao et al. (2018) view densely recorded functional magnetic resonance imaging (fMRI)
mediators as functional data, and employed functional models as SEMs.

None of the above methods is directly applicable to irregular longitudinal data. To
address the gap in methodology, Zeng et al. (2020) adopted the functional mediation
perspective and proposed a general method applicable to both regular and irregular
longitudinal mediators and outcomes. Specifically, they view the observed time-varying
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mediators or outcomes as realizations of underlying stochastic processes, and impose a
functional principal component analysis (FPCA) model (Yao et al. 2005; Jiang and Wang
2010, 2011; Han et al. 2018; Kowal and Bourgeois 2020) to impute the entire process.
However, Zeng et al. (2020) focused on continuous outcomes, while survival outcomes
are common in real applications. It is challenging to handle longitudinal mediators and
survival outcomes simultaneously (Lange et al. 2012; VanderWeele 2011). The existing
related literature focuses on regular longitudinal mediators (Zheng and van der Laan 2017;
Lin et al. 2017b). There are two main complications in analyzing time-varying mediators
with survival outcomes: (i) the mediator value for a given subject in the study is not well
defined after the subject dies; and (ii) at each step, both the value of the mediator and
the survival outcome depend upon prior survival, which renders prior survival as a post-
treatment confounder between mediator and outcome and thus standard identification
results no longer hold (Didelez 2019a,b; Vansteelandt et al. 2019). Didelez (2019b) tackled
these problems by separating the primary treatment into a treatment on mediator and a
treatment on outcome, and provided corresponding identification assumptions.

In this paper, we extend the functional data analysis perspective in Zeng et al. (2020)
to accommodate longitudinal mediators on an arbitrary grid with a survival outcome.
Viewing the longitudinal mediator observations as functional data provides a principled
and flexible way to adjust for the correlation between time-varying mediators and directly
model its relationship with the survival outcomes, and thus bypasses the two aforemen-
tioned complications. We define relevant causal estimands and provide assumptions for
nonparametrically identifying these estimands. For estimation, we proceed under the
two-SEM mediation framework (Imai et al. 2010b). Similar to Zeng et al. (2020), we
specify a Bayesian functional principal component analysis (FPCA) model (Kowal and
Bourgeois 2020) to project the mediator trajectories to a low-dimensional representa-
tion and impute the underlying mediator process. We also specify a Cox proportional
hazard model for the survival outcome, and derive an analytical formula to express the
causal estimands by the model coefficients using g-computation Robins (1986). We ap-
ply the proposed method to a prospective and longitudinal observational data set from
the Amboseli Baboon Research Project (Alberts and Altmann 2012). We further devel-
oped a sensitivity analysis method to assess the impact of potential violations to the key
assumption of sequential ignorability.

The remainder of this paper proceeds as follows. Section 2 introduces the scientific
premise and data of the motivating application. Section 3 presents the causal mediation
analysis framework for the setting of irregular longitudinal mediators and survival out-
comes and introduces causal estimands and assumptions necessary to nonparametrically
identify the estimands. Section 4 proposes a specific modeling and estimation strat-
egy. Section 5 applies the proposed methods to the baboon study. Section 6 develops a
sensitivity analysis. Section 7 concludes.
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2 Motivating Application: Early Adversity, Physio-

logical Stress, and Survival

2.1 Biological Background

Experiences during early life and adulthood can have profound effects on adult health
and survival. For example, negative socioenvironmental conditions during childhood are
linked to dysregulation of the stress response and poor adult survival in humans (Berens
et al. 2017; Evans et al. 2013; Felitti et al. 1998; Miller et al. 2009, 2011; Petruccelli
et al. 2019). In addition, dysregulation of the stress response in adulthood leading to
altered glucocorticoid (GC) hormone profiles is hypothesized to reduce lifespan in humans
(Adam et al. 2017; Hertzman 1999; Miller et al. 2011; Schoenle et al. 2021) and is known
to do so in wild baboons (Campos et al. In Press). Can we identify the major mediators
of early life adversity’s effects on adult survival? On the one hand, the effects of early
life adversity may be concentrated in one or several relatively simple health indices in
adulthood, specifically dysregulation of the stress response (Hertzman 1999; Miller et al.
2011). In this case, we would predict that GC hormone profiles are a major mediator
of the link between early adversity and survival. On the other hand, the effects of
early adversity may be diffuse and multi-factorial, and/or variation in the adult stress
response may have multiple causes, leading to very weak mediation by GC hormone
profiles in the link between early adversity and survival. No studies to date have been
able to unambiguously link real time data on early life adversity, dysregulation of the
stress response in adulthood (via assessment of adult GC profiles), and survival in the
same individuals. Therefore, the relative importance of early life adversity versus any
independent effects of adult physiology in determining survival remains unclear (Boyce
and Hertzman 2018; Harris 2019; Warren 2009).

2.2 Data

In this paper, we investigate the causal mediation relationship between early adversity,
GC hormone profiles, and survival. We use data from a well-studied population of sa-
vannah baboons in the Amboseli ecosystem in Kenya. Founded in 1971, the Amboseli
Baboon Research Project has prospective longitudinal data on early life experiences, and
fine-grained longitudinal data on adult fecal GC concentrations (Alberts and Altmann
2012).

Our study sample includes 199 female baboons and 11914 observations in total. Sur-
vival was assessed for each female baboon starting at age 4 years, but GC hormone
concentrations were measured only for females that had reached menarche (average age
at menarche = 4.73 ± 0.56 years). For each subject, we had information on the experi-
ence of six sources of early adversity (i.e., exposure) (Tung et al. 2016; Rosenbaum et al.
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Figure 1: Irregular and sparse GC observations (log transformed) for two randomly
selected baboons in the sample.

2020): drought, maternal death, close-in-age younger sibling, high group density, low
maternal rank, and maternal social isolation. While only a small proportion of baboons
experienced any given source of early adversity, most baboons experienced at least one
source of early adversity. In our analysis we also create a binary exposure variable that
indicates whether a baboon experienced any source of adversity.

The mediator is each baboon’s GC hormone profile across adulthood. These profiles
are measured by assessing GC concentrations in fecal samples. For wild baboons, the
GC hormone is recorded based on opportunistic collection of fecal samples and is thus
measured on an irregular grid. The values of GC range from 7.51 ng/gm to 982.87
ng/gm with mean value at 76.90 ng/gm and standard deviation 39.58 ng/gm. We record
the age of the subject at each sample collection as the time index for within-individual
observations on GC concentrations. The frequency of observations and time grids of the
mediator trajectories vary significantly between baboons: we have on average 59.86 GC
observations of each baboon, but the number of observations of a single baboon ranges
from 3 to 284. Figure 1 shows the mediator trajectories of two randomly selected baboons
(with codenames “ABB” and “SCE”) in the sample.

The survival time is measured in years. Figure 2 shows the Kaplan-Meier estimates
of the survival function in groups with different number of early adversities. Clearly the
baboons experiencing fewer early adversities have better chance of survival. In particular,
baboons who experienced two or more early adversities have a sharply decreased survival
probability compared with those who had fewer adversities.
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Figure 2: Kaplan-Meier estimates of survival function in groups with different number of
early adversities.

The time-varying covariates include reproductive state (i.e. cycling, pregnant, or
lactating), density of the social group, group density squared (Markham et al. 2015),
max ambient temperature in the 30 days before the fecal sample was collected, whether
the sample was collected in wet or dry season, the deviation in rainfall from expected
during the three months prior to sample collection, storage time as fecal powder (time
between collection of fecal sample and methanol extraction), storage time in methanol
(time between methanol extraction and GC measurement), proportional dominance rank,
and whether the focal female was top ranked or not. All these covariates are deemed
important to wild baboons’s physiology and behavior. More information can be found in
Rosenbaum et al. (2020) and Levy et al. (2020).

3 Causal Estimands and Identification

3.1 Setup and Causal Estimands

Suppose we have a sample of N subjects; each subject i (i = 1, 2, · · · , N) is assigned to a
treatment (Zi = 1) or a control (Zi = 0) group. For each subject i, we make observations
at Ti time points {tij ∈ [0, T ], j = 1, 2, · · · , Ti}, and the interval between two consecutive
time points can differ within and across subjects. At each time point tij, we measure
a mediator Mij, and a vector of p time-varying covariates Xij = (Xij,1, · · · , Xij,p)

′. Let
Vi denote the survival time and Ci be the censoring time. The survival time might be
right censored when Ci ≤ Vi so we observe Ṽi = min(Vi, Ci) and the indicator that
whether the subject failed within the study period δi = 1Vi≤Ci

. In summary, we observe
(Zi,Mij,Xij, Ṽi, δi), j = 1, 2, · · ·Ti for each subject i.

We view the observed mediator values drawn from a smooth underlying process Mi(t),
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t ∈ [0, T ], with errors drawn from Normal distribution:

Mij = Mi(tij) + εij, εij ∼ N (0, σ2
m). (1)

We aim to investigate the relationship between Zi, the stochastic processes Mi(t), and
the survival outcome Vi. In particular, we wish to answer two questions: (a) how big
is the causal impact of the treatment on the survival time, and (b) how much of that
impact is mediated through the mediator process?

Following the standard notation of potential outcomes in causal inference (Imbens
and Rubin 2015), we move the time index of the mediator process to the superscript:
Mi(t) = M t

i from now on. Also, we use bold font to denote a process until time t:
Mt

i ≡ {M s
i , s ≤ t} ∈ R[0,t]. Similarly, we denote covariates between the jth and j + 1th

time point for subject i as Xt
i = {Xi1, Xi2, · · · , Xij′} for tij′ ≤ t < tij′+1. Further, let

Mt
i(z) ∈ R[0,t] for z = 0, 1 and t ∈ [0, T ], be the potential values of the unobserved smooth

mediator process for subject i until time t under the treatment status z; let Vi(z,m) ∈
R[0,T ] be the potential survival time for subject i under the treatment status z and the
mediator process taking value of m ∈ R[0,T ]. The most important potential outcomes
are those corresponding to the mediator value being the potential mediator under an
intervention z′, Vt

i(z,M
t
i(z
′)). For each subject, we can only observe one realization

from the potential mediator process and at most one potential survival time if not being
censored:

Mt
i = Mt

i(Zi) = ZiM
t
i(1) + (1− Zi)Mt

i(0), (2)

Vi = Vi(Zi,M
T
i (Zi)) = ZiVi(1,M

T
i (1)) + (1− Zi)Vi(0,MT

i (0)). (3)

We define the survival function for the potential survival time when a subject’s treatment
status is z and the mediator process takes the value as if the subject was treated by z′,
as Sz,z′(t),

Sz,z′(t) = Pr(Vi(z,M
T
i (z′)) > t), for any z, z′ = 0, 1. (4)

When z 6= z′, the potential outcome Vt
i(z,M

t
i(z
′)) is called cross-world counterfactual

(Imai et al. 2010a) because the initial intervention is different from the hypothetical in-
tervention for the mediator. Cross-world counterfactuals are philosophically controversial
(Lok 2016; Lok and Bosch 2021) but they are critical in defining causal estimands and
have been widely adopted in the causal mediation literature, which we also follow in this
paper.

We define the total effect (TE) of the treatment on the expected survival time as:

τh,tTE = E[h{Vi(1,MT
i (1)); t} − h{Vi(0,MT

i (0)); t}]. (5)

where t is a fixed time point, and h(·; t) is a function that transforms the survival outcome
and thus defines causal estimands on different scales. For example, when h(x; t) = x ∧ t

7



(i.e. the truncation function), τ tTE compares the restricted mean survival time. If we
let t → ∞, τ tTE reduces to the standard average treatment effect (ATE) that compares
the expected difference. When h(x; t) = 1{x>t} (i.e. the at-risk function), τ tTE becomes
the comparison on survival probability. TE can be decomposed into direct and indirect
effects (Robins and Greenland 1992; Pearl 2001; Imai et al. 2010a). Specifically, we define
the average causal mediation (or indirect) effect (ACME) and the average natural direct
effect (ANDE): for z = 0, 1

τh,tACME(z) ≡ E[h{Vi(1,MT
i (z))} − h{Vi(0,MT

i (z))}], (6)

τh,tANDE(z) ≡ E[h{Vi(z,MT
i (1))} − h{Vi(z,MT

i (0))}]. (7)

ACME and ANDE quantifies the portion in the TE that goes through and bypasses the
mediators, respectively. ACME is also referred as the natural indirect effect (Pearl 2001),
or the pure indirect effect for τh,tACME(0) and total indirect effect for τh,tACME(1) (Robins and
Greenland 1992). It is easy to verify that TE is the sum of ACME and ANDE:

τh,tTE = τh,tACME(z) + τh,tANDE(1− z), z = 0, 1. (8)

Therefore, we only need to identify two of the three quantities τh,tTE , τh,tACME(z), τh,tANDE(z).
In this paper, we estimate τh,tTE and τh,tACME(z), which can be expressed as functions of the
survival function, Sz,z′(t). Specifically, with the at-risk function h(x; t) = 1{x>t}, we have

τh,tTE =

∫ t

0

{S1,1(u)− S0,0(u)}du, τh,tACME(z) =

∫ t

0

{Sz,1(u)− Sz,0(u)}du,

and with the truncation function h(x; t) = x ∧ t, we have

τh,tTE = S1,1(t)− S0,0(t), τh,tACME(z) = Sz,1(t)− Sz,0(t).

Further, for simplicity we only consider the estimands with h = x ∧ t and t =∞, which
contrasts the expected potential survival time. Alternative estimands such as difference
in restricted mean or survival probability (VanderWeele 2011) can be derived in a similar
manner within our framework.

3.2 Identification assumptions

Because we only observe a portion of all the potential outcomes, we need additional
assumptions to identify causal estimands from the observed data. Below we present a set
of assumptions that are sufficient for nonparametrically identifying ACME and ANDE .

The first assumption extends the standard ignorability (or unconfoundedness) as-
sumption and rules out the unmeasured treatment-outcome confounding.
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Assumption 1 (Ignorability). Conditional on the observed covariates, the treatment is
unconfounded with respect to the potential mediator process and the potential survival
time:

{Vi(1,m), Vi(0,m),Mt
i(1),Mt

i(0)} ⊥⊥ Zi | Xt
i,

for any t and m ∈ R[0,t].

In our application, Assumption 1 indicates that there is no unmeasured confounding,
conditioning on the observed covariates, between the early adversity, the process of adult
physiological stress response, and survival. Equivalently, early adversity can be viewed as
randomized among the baboons with similar covariates values. This assumption is likely
to hold in our application because the early adversity events for the wild baboons were
largely determined by nature.

The second assumption generalizes the sequential ignorability assumption in (Imai
et al. 2010b; Forastiere et al. 2018) to the functional data setting.

Assumption 2 (Sequential Ignorability). There exists ε > 0, such that for any 0 <
∆ < ε, the increment of the mediator process from time t to t+ ∆ is independent of the
potential survival time conditional on the observed treatment status, covariates and the
mediator process up to time t:

Vi(z,m) ⊥⊥ (M t+∆
i −M t

i ) | {Zi,Xt
i,M

t
i},

for any z, 0 < ∆ < ε, t, t+ ∆ ∈ [0, T ],m ∈ R[0,T ].

Assumption 2 implies that given the early adversity status, covariates, and the phys-
iological stress history up to a given time point, change in the physiological stress within
a sufficiently small time interval ∆ is randomized with respect to potential survival time.
Namely, we assume there are no unobserved mediator-outcome confounders in a suffi-
ciently small time interval. Though taking a different form, Assumption 2 is essentially
the same sequential ignorability assumption we make with the regularly spaced observa-
tions, as in Tchetgen (2011); Didelez (2019b); Vansteelandt et al. (2019), but it differs
from the sequential ignorability assumption for a time-varying continuous outcome in
Zeng et al. (2020). Assumption 2 is fundamental for mediation analysis, yet it is gener-
ally untestable even in randomized trials because it involves cross-world counterfactuals.
Therefore, it is crucial to conduct sensitivity analysis to assess the impact of potential
violations to this assumption, as we did in Section 6.

Assumptions 1 and 2 are demonstrated by the directed acyclic graphs (DAG) in Figure
3a, which implicitly condition on the covariates Xt

i and a window between sufficiently close
time points t and t+ ∆. The arrows between Zi, M

t
i , Y

t
i represent a causal relationship,

with solid and dashed lines standing for the measured and unmeasured relationships,
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respectively. Figure 3b and 3c depicts possible cases where Assumptions 1 and 2 are
violated, respectively, where Ui stands for an unmeasured confounder.

Zi ...M t
i M t+∆

i ... Vi

(a) DAG of Assumption 1 and 2

Zi ...M t
i M t+∆

i ... Vi

Ui

Zi ...M t
i M t+∆

i ... Vi

Ui

(b) DAG of two examples of violation to Assumption 1 (ignorability)

Zi ...M t
i M t+∆

i ... Vi

Ui

(c) DAG of examples of violation to Assumption 2 (sequential ignorability)

Figure 3: Directed acyclic graphs (DAG) of Assumptions 1 and 2, and potential scenarios
of violation. Ui is an unmeasured confounder. The arrows between variables represent a
causal relationship, with solid and dashed lines representing measured and unmeasured
relationships, respectively.

The third assumption imposes independent censoring mechanism, which allows us to
identify the distribution of survival time from censored data.

Assumption 3 (Independent censoring). The censoring time is independent of all re-
maining variables, including covariates, treatment, mediators and outcome:

Ci ⊥⊥ {Xi, Zi,M
t
i(z), Vi(z,m)},

for any z, t ∈ [0, T ],m ∈ R[0,T ].
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In our application, the time for a wild baboon to exit the study is largely random
and therefore this assumption is deemed reasonable. This assumption can be readily
extended to covariate-dependent censoring.

Under Assumptions 1,2 and 3, we can identify the causal estimands, which is equiva-
lent to identify the survival function Sz,z′(t), nonparametrically from the observed data.
This result is summarized in the following theorem.

Theorem 1. Let t1 < t2 <, · · · , < tk <, · · · , < tK < · · · be the time grid where we observe
event (δi = 1) and consider a fixed time point t that tK ≤ t ≤ tK+1. Under Assumptions
1, 2 and 3, and some regularity conditions (specified in the Supplementary Material), the
TE, ACME and ANDE can be identified nonparametrically from the observed data: for
z, z′ = 0, 1, we have

Sz,z′(t) =

∫ ∫
Pr(Vi > t|Mt

i = m,Xt
i = xt, Zi = z)dFMt

i|Zi=z′,Xt
i=xt(m)dFXt

i
(xt)

=

∫ ∫
{
K∏
k=1

Pr(Ṽi > tk|Ṽi > tk−1,M
tk
i = mtk ,Xtk

i = xtk , Zi = z)} ×

dFMt
i|Zi=z′,Xt

i=xt(m)dFXt
i
(xt),

where FW (·) and FW |U(·) denotes the cumulative distribution of a random variable or a
vector W and the conditional distribution given another random variable or vector U ,
respectively.

We provide the proof of Theorem 1 in the Supplementary Material. Theorem 1 indi-
cates that estimating the causal effects requires specifying two models: (a) the conditional
survival probability given the treatment, covariates, and the observed mediator process,
Pr(V t

i > t|Zi,Xt
i,M

t
i), and (b) the conditional distribution of the observed mediator pro-

cess given the treatment and covariates, FMt
i|Zi,Xt

i
(·). These two models are in parallel

to the two linear SEMs in the Baron-Kenny framework. In the next section, we specify
these two models and express the TE and ACME in terms of the model parameters.

4 Modeling mediators and survival outcome

4.1 Model for the mediators

For the mediator process, we follow Zeng et al. (2020) to employ a functional principal
component analysis (FPCA) approach to impute the entire mediator process from sparse
and irregular longitudinal data (Yao et al. 2005; Jiang and Wang 2010, 2011). In par-
ticular, we employ a Bayesian FPCA model similar to Kowal and Bourgeois (2020) to
account for the uncertainty due to estimating the functional principal components (Gold-
smith et al. 2013). The mediator model is the same as that proposed in Zeng et al. (2020)
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and thus we only present the main model form and refer the readers to Zeng et al. (2020)
for details. Our approach bypasses the conceptual challenges for mediation analysis with
survival outcomes and time-varying mediators, without decomposing the treatment into
different components or altering the definition of mediation effect, as in Didelez (2019b).
First, by treating the mediator process as a whole from the functional data perspective,
the mediator is defined on the same domain for all subjects. The mediator value is well-
defined even at the time point after the subject fails. Second, we can separate out the
survival status and mediator process by viewing the mediator as a function or a process
for each subject. By doing so, we ensure that prior survival is no longer a post-treatment
confounder that affects both the mediator and the survival in the future.

We assume the potential processes for mediators Mt
i(z) have the following Karhunen-

Loeve decomposition,

M t
i (z) = µM(Xt

i) +
∞∑
r=1

ζri,zψr(t), (9)

where µM(·) are the mean functions of the mediator process Mt
i; ψr(t) are the Normal

orthogonal eigenfunctions for Mt
i, and ζri,z are the corresponding principal scores of subject

i. The above model assumes that the treatment affects the mediation processes only
through the principal scores. We represent the mediator process of each subject with
its principal score ζri,z. Given the principal scores, we can transform back to the smooth
process with a linear combination.

The underlying process Mt
i is not observed. We assume the observations Mij’s are

randomly sampled from the corresponding underlying processes with errors. For the
mediator trajectories, we impose the following model truncating to the first R principal
components of the mediator process:

Mij = X ′ijβM +
R∑
r=1

ζri ψr(tij) + εij, εij ∼ N (0, σ2
m), (10)

where ψr(t) (r = 1, ..., R) are the orthogonormal principal components, ζri (r = 1, ..., R)
are the corresponding principal scores, and εij is the measurement error. We follow the
same parametrization and prior distributions used in Kowal and Bourgeois (2020). More
details can be found in the Supplementary Material and in Zeng et al. (2020).

We select the minimal truncation term R which renders the fraction of explained
variance (FEV),

∑R
r=1 λ

2
r/

∑∞
r=1 λ

2
r being greater than 90%. We usually require only 3 or

4 components to explain most of the variation.

4.2 Model for the survival outcome

We posit the following Cox proportional hazards model for the survival time,

λ(tij|Xij, Zi,M
t
i) = λ0(tij) exp{αZi +X ′ijβS + f(Mt

i; γ)}, (11)
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where λ0(tij) is the baseline hazard rate, and f(Mt
i; γ) is a function of the mediators

with parameter γ, which captures the impact of the mediator process on the hazard rate.
Specification of f(Mt

i; γ) is crucial, and in this paper we consider two specifications of f :

(i) a concurrent model that assumes the hazard rate depends on the instantaneous
mediator value, f(Mt

i; γ) = γMi(t);

(ii) a cumulative model that assumes the hazard rate depends the entire mediator
process until to time t, f(Mt

i; γ) =
∫ t

0
γ(s)Mi(s)ds.

We can express the causal estimands, such as the TE and ACME, as functions of
parameters of the mediator model (10) and the survival outcome model (11). First, we
express Sz,z′(t) via the g-formula as,

Sz,z′(t) = exp{−Λz,z′(t)},

Λz,z′(t) =
1

N

N∑
i=1

Ti∑
j=1

λ0(tij) exp{αz +X ′ijβS + f(X ′ijβM +
R∑
r=1

χrz′ψr(s); γ)}(tij − tij−1),

where Λz,z′(t) denotes the cumulative hazard for Vi(z,M
T
i (z′)). Next, we can calculate

τTE and τACME based on Sz,z′(t) with the equations in Theorem 1.
We impose a Gamma process prior for the baseline hazard rate λ0(t) (Fahrmeir and

Lang 2001; Ibrahim et al. 2014; Wang et al. 2013) and standard normal prior distributions
for other coefficients. For the cumulative model, we parameterize the function γ(s) as a
linear combination of the spline basis b(t) = (1, t, b1(t), · · · , bL(t))′ (Kowal and Bourgeois
2020). Specifically,

γ(t) = b(t)′p,

where p is the coefficients with Normal prior, which enables a flexible modeling of how
the past mediator history affects the survival outcome.

We perform posterior inference via Gibbs sampling. The credible intervals of the
causal effects τTE and τACME can be obtained from the posterior sample of the parameters
in the model. We provide the details of the Gibbs sampler in the Supplementary Material.

5 Application to the Amboseli Baboon Research

Project

We apply the proposed method to the data described in Section 2.2 to investigate the
causal relationship between early adversity, adult stress response, and survival in wild
baboons. We perform a separate causal mediation analysis for each source of early
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adversity. We posit model (10) for the GC concentrations and Model (11) for the survival
outcome. In both models, we added two random effects, one for social group and one for
hydrological year. In the mediator model, we use the log transformed GC concentrations
instead of the original scale, which allows us to interpret the coefficient as the percent
difference in GC concentrations between the adversity and non-adversity groups.

Here we first summarize the results of FPCA of the mediator trajectories, of which the
first three functional principal components explain more than 90% of the total variation.
Figure 4 shows the first two principal components extracted from the mediator process,
which explain 59% and 38% of the total variation, respectively. The first component
depicts a relatively stable trend throughout the life span. The second component shows
a quick rise until age 6, then steady drop pattern across the lifespan.

0
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4 8 12 16
Age at sample collection
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ig

en
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1st  PC:59.12%
2nd PC:38.79%

Figure 4: The first two functional principal components of the mediator process, i.e., GC
concentrations.

The left panel of Figure 5 displays the observed trajectory of GCs versus the posterior
mean of the imputed smooth process of three randomly chosen baboons who experienced
zero (EPI), one (ELA), and two (RWA) sources of early adversity, respectively. We can
see that the imputed smooth process generally captures the overall time trend of each
subject while reducing the noise in the observations. Recall that each subject’s observed
trajectory is fully captured by its vector of principal scores, and thus the principal scores
of the first few dominant principal components adequately represent the whole trajectory.
The right panel of Figure 5 shows the principal scores of the first (X-axis) versus second
(Y-axis) principal component for the mediator process of all subjects in the sample, color-
coded based on the number of early adversities experienced. We can see that significant
differences exist in the distributions of the first two principal scores between the group
who experienced no early adversity and the group experienced exactly one or the group
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with more than one sources of adversity.
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Figure 5: Left panel: Examples of observed trajectory of GCs versus the posterior mean
of its imputed smooth process of three baboons who experienced zero (EPI), one (ELA)
and two (RWA) sources of early adversity, respectively. Right panel: Principal scores
of the first (X-axis) versus second (Y-axis) principal component for the GC process of
all subjects in the sample, including the three example subjects that are illustrated in
the left panel (with individual names labeling the corresponding points). Color-coding is
based on the number of early adversities experienced.

We now summarize the results on the causal estimates. Table 1 presents the posterior
mean and 95% credible interval of the total effect (TE), direct effect (ANDE) and indirect
effect mediated through social bonds (ACME) of each source of early adversity on life
expectancy, as well as the effects of early adversity on the mediator. First, from the
first column of Table 1 we can see that experiencing any source of early adversity would
increase the GC concentrations in adulthood, which is detrimental to the health of the
baboon. The effect is particularly severe for those who experienced drought, high group
density, maternal death or low maternal rank in early life. For example, compared with
the baboons who did not experience any early adversity, the baboons who experienced
drought in the first year of life have 9.7% increase in GC response. Overall, experiencing
at least one source of early adversity corresponds to GC concentrations that are 9.4%
higher in adulthood.

Second, from the second column of Table 1 we can see a strong negative total effect
of early adversity on the life expectancy of female baboons. Baboons who experienced at
least one source of early adversity had a life expectancy approximately 1.5 years shorter
than their peers who experienced no early adversity. The range of total effect sizes
across all individual adversity sources varies from 0.691 to 2.199 years life reduction and
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the point estimates are consistently toward a shorter survival time, even for the early
adversity sources for which the credible interval includes zero. Among the individual
sources of adversity, females who were born during a drought or experienced maternal
death experienced a particularly drastic drop in life expectancy, with effect sizes of 1.795
and 2.199 years respectively.

Table 1: Total, direct and indirect causal effects of individual and cumulative sources
of early adversity on life expectancy in adulthood in wild female baboons (measured in
year). 95% credible intervals are in the parenthesis.

Source of adversity effect on mediator (%) τTE τANDE τACME

Drought 9.7% -1.795 -1.596 -0.199
(1.5%,18.0%) (-3.300,-0.291) (-2.852,-0.341) (-0.594,0.197)

Competing sibling 6.9% -0.994 -0.886 -0.108
(1.4%,12.5%) (-4.038,2.049) (-2.894,1.121) (-0.210,-0.006)

High group density 11.9% -0.691 -0.449 -0.242
(2.8%,21.0%) (-3.122,1.740) (-2.512,1.614) (-0.460,-0.024)

Maternal death 9.7% -2.199 -1.972 -0.227
(1.5%,17.9%) (-3.856,-0.543) (-3.527,-0.418) (-0.466,0.013)

Maternal social isolation 8.0% -0.692 -0.572 -0.120
(1.7%,14.4%) (-3.188,1.805) (-2.763,1.618) (-0.255,0.016)

Low maternal rank 11.5% -1.392 -1.046 -0.346
(2.6%,20.4%) (-3.991,1.207) (-3.201,1.108) (-0.728,0.036)

At least one 9.4% -1.494 -1.292 -0.202
(1.8%,17.0%) (-2.748,-0.239) (-2.264,-0.320) (-0.551,0.147)

Third, while female baboons who experienced harsh conditions in early life have a
lower life expectancy, we found no strong evidence that these effects were mediated by
GC hormone profiles. Specifically, the mediation effect τACME (the fifth column in Table
1) is relatively small; the increase in adult GC concentrations accounted for a reduction
in life expectancy of 0.202 years, when comparing the baboons who experienced at least
one early adversity to those did not, with a credible interval including zero. In terms of
individual early adversity sources, only two out of six individual adversity sources have
a negative mediation effect with credible intervals not including zero, and both effects
are quite small. On the other hand, the direct effects τANDE (the third column in Table
1) are much larger than the mediation effects. When comparing the baboons with or
without experiencing any source of early adversity, the direct effect of early adversity on
life expectancy was 6.4 times stronger than the mediation effect running through adult
physiological stress response. Specifically, for females who experienced at least one source
of early adversity, the direct effect accounts of 1.292 years reduction in life expectancy
while the mediation effect through GC accounts for only 0.202 years drop in the average
survival time.
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6 Sensitivity Analysis

The sequential ignorability assumption (Assumption 2), which rules out unmeasured
mediator-outcome confounding, is fundamental to our analysis, but it is generally untestable
from the observed data. So we develop a sensitivity analysis method to assess the impact
of potential violation to sequential ignorability. Given the complex structure of media-
tion analysis, we adopt a model-based approach with the unmeasured confounders as the
augmented variables, along the lines in Imai et al. (2010a); Huang et al. (2020). Specifi-
cally, we introduce an unmeasured confounder Ui to characterize the correlation between
the mediator process and the survival outcome that is not captured by covariates Xij.
Without loss of generality, we posit Ui to be binary. We expanded the mediator model
(10) and the outcome model (11) to accommodate U as follows:

Mij = Mi(tij) + εij = βTMXij +
R∑
r=1

ψr(t){τ r0 (1− Zi) + τ r1Zi}+ ζMUi + εij, (12)

λ(t|Xij, Zi,M
t
i) = λ0(t) exp{αZi +X ′ijβS + f(Mt

i; γ) + ζSUi}, (13)

where ζM and ζS are the pre-specified sensitivity parameters that measure the correlation
between the unmeasured confounder and mediator process and the survival outcome,
respectively. When sequential ignorability holds, there is no unmeasured confounder
that simultaneously correlates with the mediator process and survival outcome, and thus
ζMζS = 0. When both ζM and ζS are non-zero, sequential ignorability is violated. There-
fore, we use (ζM , ζS) as the sensitivity parameters to measured the degree of violation to
Assumption 2.

Our sensitivity analysis consists of the following steps. First, we choose a grid
of values of the sensitivity parameters (ζM , ζS). For example, we choose (ζM , ζS) ∈
{0, 0.1, 0.2, 0.5, 1} × {0, 0.1, 0.5, 1} in our application. Second, with each fixed pair of
(ζM , ζS), we fit the models (12) and (13). Compared with the original models, (10) and
(11), here we need to have an additional step of simulating the unmeasured confounder Ui
given the observed data (Zi, Xij, δi, T̃i), (ζM , ζS) and the other model parameters. Next,
we estimate the mediation effect τACME from the posterior sample following the same
procedure in Section 4. We repeat the above steps with the all possible combinations
of (ζM , ζS) on the pre-specified grid and examine how variable the estimates of τACME

are to the values of (ζM , ζS), which reflects how sensitive the causal estimates are to the
violation of Assumption 2.

Figure 6 summarizes the results of the sensitivity analysis under the aforementioned
specified grid of (ζM , ζS) in our application. First of all, we notice that the point estimate
of τACME becomes close to zero as ζM or ζS increases, and the effect size of τACME becomes
negligible when ζS ≥ 0.5 and ζM ≥ 0.1. Also, the credible interval becomes wider when
either one of the sensitivity parameters (ζM , ζS) becomes larger. These patterns indicate
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Figure 6: Sensitivity analysis with a grid of (ζS, ζM). Each value of a fixed ζS is coded
by a different color; for a given ζS, the point estimate and corresponding 95% credible
interval of τACME as a function of ζM is presented by the solid and dashed line, respectively.

our estimation of the mediation effect is sensitive to the sequential ignorability assump-
tion. Recall that the our analysis under Assumption 2 found only a small mediation effect.
This sensitivity analysis further suggests that there is no strong evidence supporting that
the adult physiological stress response mediates the effect between early adversity and
survival.

7 Discussion

We proposed a method for causal mediation analysis with a longitudinal mediator on an
arbitrary time grid and a survival outcome. The main idea is to view the time-varying
mediator values as realizations from an underlying smooth process and use functional
principal component analysis to impute the entire process, which is then used in the
structural equation models. This approach naturally bypasses several conceptual and
technical challenges in such settings. We defined several causal estimands in such set-
tings and specified structural assumptions to nonparametrically identify these effects.
We applied the proposed method to analyze the causal effects of early adversity on adult
physiological stress responses and survival in wild female baboons. We found that expe-
riencing adversity early in life significantly increases a baboon’s GC response throughout
its adulthood and decreases its survival probability. However, we found little evidence
that the effect of early adversity on survival is mediated through the chronic elevation
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in the GCs, which is linked to poor health and survival in many species (Schoenle et al.
2021). Our results suggest that early adversity and GC in adulthood have independent ef-
fects on survival and raise interesting questions in evolutionary biology about alternative
causal pathways between early adversity and survival

We developed a model-based method to conduct sensitivity analysis regarding the key
assumption of sequential ignorability. Given the complex structure of mediation analy-
sis, related sensitivity analysis usually involves strong and sometimes overly simplified
assumptions. For example, our sensitivity analysis depends on the correct specification
of the mediator model and the outcome model, while misspecification is common in real
applications. Also, to simplify the analysis we assume that the correlation structure
between mediator and outcome is constant across time. Nevertheless, even a simplified
sensitivity analysis still provides useful insights to causal mediation analysis; in partic-
ular it prevents over-interpreting the results and calls for more rigorous investigation of
the causal assumptions. We notice that though sensitivity analysis has been standard in
causal inference, it has not been routinely performed in causal mediation analysis. We
believe more research on interpretable and flexible sensitivity analysis method would help
the applied audience to employ causal mediation analysis.

Though motivated by a specific application, the proposed method is readily applicable
to other causal mediation studies with similar data structure. For example, comparative
effectiveness studies increasingly use electronic health records (EHR) data, where the
number of observations usually varies greatly between patients and the time grids are
uneven. Moreover, many longitudinal studies in ecology rely on opportunistic sampling
of their subjects, resulting in irregularly-spaced observations.
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Appendix

A.1 Proof for Theorem 1

We first provide the required regularity assumptions. (i) Suppose the potential survival
time Vi(z,m) as a function of the mediator process m is Lipschitz continuous on [0, T ]
with probability one. Namely, there exists a constant A < ∞ such that |Vi(z,m) −
Vi(z,m

′)| ≤ A||m−m′||2 for any z,m,m′ almost surely. (ii) Any path of m we consider
is Lipschitz continuous. There exists a constant B, such that |m(t1)−m(t2)| ≤ B|t1− t2|
for any t1, t2 ∈ [0, T ].

Fix a time point t and suppose the domain for the covariates is X , with Xt
i ∈ X . For

any z, z′ ∈ {0, 1}, we have∫
X

∫
R[0,t]

Pr(Vi > t|Zi = z,Xt
i = xti,M

t
i = m)dFMt

i|Zi=z,Xt
i=x

t(m)dFXt
i
(xt)

=

∫
X

∫
R[0,t]

Pr(Vi(z,m) > t|Zi = z,Xt
i = xti,M

t
i = m)dFMt

i|Zi=z,Xt
i=x

t(m)dFXt
i
(xt)

For any path m on the [0, t], we make equal partitions into H pieces at points MH =
{t0 = 0, t1 = t/H, t2 = 2t/H, · · · , tH = t} and corresponding values on path m are
{m0,m1, · · · ,mH}. Then, we consider using a step function from [0, t]→ R with jumps
at points MH . Denote the step function as mH , which is:

mH(x) =


m(0) = m0 0 ≤ x < t/H,

m(t/H) = m1 t/H ≤ x < 2t/H,

· · ·
m((H − 1)t/H) = mH (H − 1)t/H ≤ x ≤ t.

We employ this step function mH(x) to approximate function m. First, given m is Lips-
chitz continuous, there exists B > 0 such that |m(x1)−m(x2)| ≤ B|x1 − x2|. Therefore,
the step function mH can approximate the original function m well as H goes up,

||mH −m||2 ≤
H∑
i=1

t

H
B2 t

2

H2
� O(H−2).
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Therefore, we can approximate the survival probability given a continuous mediator
process with the mediator values on the jumps, (m0,m1, · · · ,mH). That is,∫
R[0,t]

Pr(Vi(z,m) > t|Zi = z,Xt
i = xt,Mt

i = m)× d{FMt
i|Zi=z′,Xt

i=xt(m)}

�
∫
R[0,t]

Pr(Vi(z,mH) > t|Zi = z,Xt
i = xt,Mt

i = mH)× d{FMt
i|Zi=z′,Xt

i=xt(mH)}+O(H−2).

This step applies the regularity condition that the potential survival time V t
i (z,m) as a

function of m is continuous with the L2 metrics of m. As the values of steps function
mH are completely determined by the values on finite jumps, we can further reduce the
conditional survival probability to,

�
∫
RH

E(Y t
i (z,mH)|Zi = z,Xt

i = xt,m0,m1,m2, · · ·mH)

×d{Fm0,m1,··· ,mH |Zi=z′,Xt
i=xt(m0,m1,m2, · · ·mH)}+O(H−2).

Under Assumption 1, we have,

d{Fm0,m1,··· ,mH |Zi=z′,Xt
i=xt(m0,m1,m2, · · ·mH)}

= d{Fm0(z′),m1(z′),··· ,mH(z′)|Xt
i=xt(m0,m1,m2, · · ·mH)},

= d{FmH(z′)|Xt
i=xt(mH)}.

With a slightly abuse of notations, let mH(z) denote the potential step functions induced
by the original potential process Mt

i(z) and mi(z) to denote potential values of Mt
i(z)

evaluated at point ti = it/H. Under Assumption 2, we can choose a large H such that
t/H ≤ ε. Then we have the following conditional independence conditions,

Vi(z,mH) ⊥⊥m0|Zi,Xt
i,

Vi(z,mH) ⊥⊥(m1 −m0)|Zi,Xt
i,m

0
H ,

Vi(z,mH) ⊥⊥(m2 −m1)|Zi,Xt
i,m

t/H
H ,

· · ·
Vi(z,mH) ⊥⊥(mH −mH−1)|Zi,Xt

i,m
t(H−1)/H
H ,

where are equivalent to,

Vi(z,mH) ⊥⊥m0|Zi,Xt
i,

Vi(z,mH) ⊥⊥(m1 −m0)|Zi,Xt
i,m0,

Vi(z,mH) ⊥⊥(m2 −m1)|Zi,Xt
i,m0,m1,

· · ·
Vi(z,mH) ⊥⊥(mH −mH−1)|Zi,Xt

i,m0,m1 · · · ,mH−1,
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as the step functionm
it/H
H , i ≤ H is completely determined by values at jumps {m0, · · · ,mi}.

With the established conditional independence, we have,

Pr(Vi(z,mH) > t|Zi = z,Xt
i = xt,m0,m1,m2, · · ·mH) = Pr(Vi(z,mH) > t|Zi = z,Xt

i = xt).

With similar arguments, we can show that,

Pr(Vi(z,mH) > t|Zi = z,Xt
i = xt) = Pr(Vi(z,mH) > t|Zi = z′,Xt

i = xt),

= Pr(Vi(z,mH) > t|Zi = z,Xt
i = xt,m0 = m0(z′), · · ·mH = mH(z′)),

= Pr(Vi(z,mH) > t|Zi = z,Xt
i = xt,mH(z′) = mH),

= Pr(Vi(z,mH) > t|Xt
i = xt,mH(z′) = mH).

As a conclusion, we have shown that,∫
X

∫
R[0,t]

Pr(Vi(z,m) > t|Zi = z,Xt
i = xt,Mt

i = m)dFXt
i
(xt)× d{FMt

i|Zi=z′,Xt
i=xt(m)},

�
∫
X

∫
R[0,t]

Pr(Vi(z,mH) > t|Xt
i = xt,mH(z′) = mH)× d{FmH(z′)|Xt

i=xt(mH)}dFXt
i
(xt) +O(H−2),

�
∫
X

Pr(Vi(z,mH(z′)) > t|Xt
i = xt) +O(H−2) �

∫
X

Pr(Vi(z,m(z′)) > t|Xt
i = xt) +O(H−2).

The last equivalence follows from the regularity condition of Vi(z,m(z′)) as a function of
m(z′). Let H goes to infinity, we have,∫

X

∫
R[0,t]

Pr(Vi > t|Zi = z,Xt
i = xt,Mt

i = m)dFXt
i
(xt)× d{FMt

i|Zi=z′,Xt
i=xt(m)}

=

∫
X

Pr(Vi(z,m(z′)) > t|Xt
i = xt)dFXt

i
(xt) = Pr(Vi(z,m(z′)) > t) = Sz,z′(t)

Under Assumption 3, the conditional survival function can be estimated with a non-
parametric Kaplan Meier estimator,

Pr(Vi > t|Zi = z,Xt
i = xt,Mt

i = m) =
K∏
k=1

Pr(Ṽi > tk|Ṽi > tk−1,M
t
i = m.Xt

i, Zi = z)

=
K∏
k=1

Pr(Ṽi > tk|Ṽi > tk−1,Mi = mtk .Xtk
i , Zi = z),

where t1 < t2 <, · · · , < tk <, · · · , < tK < · · · is the time grid where we observe failure
event (δi = 1) and the selected fixed time point t lies between tK and tK+1. Hence, we
complete the proof for Theorem 1.
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A.2 Details of Gibbs Sampler

In this section, we provide detailed descriptions on the Gibbs sampler for the model in
Section 4. The sampling of mediator process is similar to the one in Kowal and Bourgeois
(2020) and Zeng et al. (2020). Therefore, we omit the details for simplicity and refer the
reader to Zeng et al. (2021).

Next, we describe the sampling for the survival model. As we have the model,

λ(t) = λ0(t) exp(Ziα +X ′ijβS + f{Mt
i, γ}).

The survival function for a specific subject becomes,

Si(t) = Pr(Vi > t) = exp(−Hi(t)) = exp(−
∫ t

0

hi(s)ds)

where Hi(t) is the cumulative hazard function, which is a right-continuous increasing
function with Hi(0) = 0. For a given observation (Ṽi, δi,Xij,Mij, Zi), the likelihood of
this observation is,

Lij = (1− δij) Pr(Vi > tij) + δij Pr(Vi = tij).

where δij is the indicator for whether the subject is still alive at time point tij. To derive
an explicit formula for the likelihood, we let λ1, λ2, · · · , λK be the baseline hazard for
a specified time grids t1 < t2, · · · , < tK that at least one failure happens in each bin
(tk−1, tk]. Then the cumulative hazard function becomes,

Hi(t) =
K∑
k=1

λkUi,k(t, α, βS, γ),

where

Ui,k(t, α, βS, γ) = (tk − tk−1) exp(Ziα +X tk
i βS + f{Mtk

i , γ}) if t > tk

Ui,k(t, α, βS, γ) = (t− tk−1) exp(Ziα +X
tk−1

i βS + f{Mt
i, γ}) if t < tk.

As such, we can express the likelihood of the data as a function of parameter ({λk}Kk=1,
α, βS, γ). First, we describe the prior of baseline hazard rate {λk}Kk=1. We specify a
Gamma Process prior on λk, that is the increments are independent across each other and
follow a Gamma distribution, λk ∼ Gamma(αk, βk). We specify αk, βk in the following
way that, we let αk = Aα(tk) and βk = B, where α(t) is strictly increasing function that
captures the mean of the hazard rate. For example, when α(t) = t, then E{λk} = tkA/B.
For the hyperparameter A,B, we specify a Gamma prior such that A,B ∼ Gamma(ε, ε)
with ε = 0.001.

Then the conditional posterior distributions of the parameters in the sample are:
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• Baseline hazard rate λk|−:

p(λk|−) = Ga(λk|αk + nk, βk +mk(α, βS, γ)),

where nk is the number of failure in (tk−1, tk] andmk(α, βS, γ) =
∑N

i=1

∑ni

j=1 Ui,k(tij, α, βS, γ).

• The hyperparameter for the Gamma Process A,B—-,

p(A|−) ∝ Aε−1 exp(−εA)Bεα(tK)

K∏
k=1

λ
A(α(tk)−α(tk−1))
k

Γ(A(α(tk)− α(tk−1))
,

p(B|−) ∝ BAα(t)+ε−1 exp(−B(ε+
K∑
k=1

λk)

This step can be updated using a one step of Metropolis random walk.

• The coefficient for treatment, covariates and mediator process: α, βS, γ|−

p(α, βS, γ|−) ∝ p(α, βS, γ) exp(
N∑
i=1

δi(Ziα +Xini
βS + f{Mtini

i , γ)−
K∑
k=1

λkmk(α, βS, γ)),

This step can be updated efficiently using the adaptive rejection methods in Gilks
and Wild (1992) as the density is log-concave in (α, βS, γ). The parameterization
of the cumulative model f{Mt

i, γ) is similar in the construction of spline basis in
mediator process. We refer the readers to Kowal and Bourgeois (2020) and Zeng
et al. (2020) for details.
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